Skip to main content
Log in

Functional Diversity of the Excretory/Secretory Proteins of Nematode Parasites

  • Review
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Introduction

Parasites release a wide array of protein as excretory and secretory products (ESPs). Irrespective of their mode of propagation, ESPs are found to be secreted or excreted by both naturally occurring and laboratory-cultivated parasites. Mass spectrometry-based approaches have been extensively used to identify and characterize the ESP constituents. ESPs are involved in various cellular activities such as immune modulation, proteolysis, inhibition of proteases and protection of cells against oxidants. Specifically, their role in host immune evasion by down-regulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines attracts scientific attention. A thorough investigation of functional diversity of ESPs may be helpful in planning control strategies against many parasites.

Methods

This review focuses on diversity of ES proteins, various approaches to identify them and discusses about the biochemical and functional aspects of such proteins.

Results

The diverse array of proteins secreted or excreted (a, GST-1, acetylcholinesterase, GAPDH) by the parasites are also described emphasizing their role in cellular physiology.

Conclusion

Finally, it concludes by citing some of these proteins as potential therapeutic agents against helminth challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yatsuda AP, Krijgsveld J, Cornelissen AWCA, Heck AJR, de Vries E (2003) Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. J Biol Chem 278:16941–16951. https://doi.org/10.1074/jbc.M212453200

    Article  CAS  PubMed  Google Scholar 

  2. Terrasse R, Delorme PT, Moriscot C et al (2012) Human and pneumococcal cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins are both ligands of human C1q protein. J Biol Chem 287(51):42620–42633. https://doi.org/10.1074/jbc.M112.423731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sahoo S, Murugavel S, Devi IK, Vedamurthy GV, Gupta SC, Singh BP, Joshi P (2013) Glyceraldehyde-3-phosphate dehydrogenase of the parasitic nematode Haemonchus contortus binds to complement C3 and inhibits its activity. Parasite Immunol 35(12):457–467. https://doi.org/10.1111/pim.12058

    Article  CAS  PubMed  Google Scholar 

  4. Gadahi JA, Wang S, Bo G, Ehsan M, Yan R, Song X, Xu L, Li X (2016) Proteomic analysis of the excretory and secretory proteins of Haemonchus contortus (HcESP) binding to goat PBMCs in vivo revealed stage-specific binding profiles. PLoS ONE 11(7):e0159796. https://doi.org/10.1371/journal.pone.0159796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hewitson JP, Harcus YM, Curwen RS, Dowle AA, Atmadja AK, Ashton PD, Wilson A, Maizels RM (2018) The secretome of the filarial parasite, Brugia malayi: Proteomic profile of adult excretory-secretory products. Mol Biochem Parasitol 160(1):8–21. https://doi.org/10.1016/j.molbiopara.2008.02.007

    Article  CAS  Google Scholar 

  6. Bennuru S, Semnani R, Meng Z, McRibeiro JMC, Veenstra TD, Nutman TB (2009) Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling. PLoS Negl Trop Dis 3(4):e410. https://doi.org/10.1371/journal.pntd.0000410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mulvenna J, Hamilton B, Nagraj SH, Smyth D, Loukas A, Gorman JJ (2009) Proteomic analysis of the excretory/secretory component of the blood-feeding stage of the hookworm, Ancylostoma caninum. Mol Cell Proteomics 8(1):109–121. https://doi.org/10.1074/mcp.M800206-MCP200

    Article  CAS  PubMed  Google Scholar 

  8. Sperotto RL, Kremer FS, Berne ME, de Avila LF, da Silva PL, Monteiro KM, Caumo KS, Ferreira HB, Berne N, Borsuk S (2017) Proteomic analysis of Toxocara canis excretory and secretory (TES) proteins. Mol Biochem Parasitol 211:39–47. https://doi.org/10.1016/j.molbiopara.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  9. Hewitson JP, Harcus Y, Murray J, van Agtmaal M, Filbey KJ, Grainger JR, Bridgett S, Blaxter ML, Ashton PD, Ashford DA, Curwen RS (2011) Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J Proteomics 74:1573–1594. https://doi.org/10.1016/j.jprot.2011.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang T, Steendam KV, Dhaenens M, Vlaminck J, Deforce D, Jex AR, Gasser RB, Gelhof P (2013) Proteomic analysis of the excretory-secretory products from larval stages of Ascaris suum reveals high abundance of glycosyl hydrolases. PLOS Negl Trop Dis 7(10):e2467. https://doi.org/10.1371/journal.pntd.0002467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chehayeb JF, Robertson AP, Martin RJ, Geary TG (2014) Proteomic analysis of adult Ascaris suum fluid compartments and secretory products. PLOS Negl Trop Dis 8:e2939. https://doi.org/10.1371/journal.pntd.0002939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Logan J, Pearson MS, Manda SS et al (2020) Comprehensive analysis of the secreted proteome of adult Necator americanus hookworms. PLOS Negl Trop Dis 14(5):e0008237. https://doi.org/10.1371/journalpntd.0008237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eichenberger RM, Talukdar MdH, Field MA, Wangchuk P, Giacomin P, Loukas A, Sotillo J (2018) Characterization of Trichuris muris secreted proteins and extracellular vesicles provides new insights into host–parasite communication. J Extracell Vesicles 7(1):1428004. https://doi.org/10.1080/20013078.2018.1428004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Menon R, Gasser RB, Mitreva M, Ranganathan S (2012) An analysis of the transcriptome of Teladorsagia circumcincta: its biological and biotechnological implications. BMC Genomics 13(suppl. 7):S10. https://doi.org/10.1186/1471-2164-13-S7-S10

    Article  PubMed  PubMed Central  Google Scholar 

  15. Geary J, Satti M, Morino Y, Madrill N, Whitten D, Headley SA, Agnew D, Geary T, Mackenzie C (2012) First analysis of the secretome of the canine heartworm, Dirofilaria immitis. Parasites Vectors 5:140–150. https://doi.org/10.1186/1756-3305-5-140

    Article  PubMed  PubMed Central  Google Scholar 

  16. Robinson MW, Greig R, Beattie KA, Lamont DJ, Connolly B (2007) Comparative analysis of the excretory-secretory proteome of the muscle larvae of Trichinella pseudospiralis and Trichinella spiralis. Intl J Parasitol 37:139–148. https://doi.org/10.1016/j.ijpara.2006.08.007

    Article  CAS  Google Scholar 

  17. Sotillo J et al (2014) Secreted proteomes of different developmental stages of the gastrointestinal nematode Nippostrongylus brasiliensis. Mol Cell Proteomics 13(10):2736–2751. https://doi.org/10.1074/mcp.M114.038950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vercauteren I et al (2003) Identification of excretory-secretory products of larval and adults Ostertagia ostertagi by immunoscreening of cDNA libraries. Mol Biochem Parasitol 126:201–208. https://doi.org/10.1016/s0166-6851(02)00274-8

    Article  CAS  PubMed  Google Scholar 

  19. Astroz-Cuesta Y, Santos A, Oliveira G, Jensen LJ (2019) Analysis of predicted host–parasite interactomes reveals commonalities and specificities related to parasitic lifestyle and tissue tropism. Front Immunol 10:212. https://doi.org/10.3389/fimmun.2019.00212

    Article  Google Scholar 

  20. Moyle M, Foster DL, McGrath DE et al (1994) A hookworm glycoprotein that inhibits neutrophil function is a ligand of the integrin CD11b/CD18. J Biol Chem 269:10008–10015. https://doi.org/10.1016/S0021-9258(17)36982-X

    Article  CAS  PubMed  Google Scholar 

  21. Ali F, Brown A, Stanssens P, Timmothy LM, Soule HR, Pritchard DI (2001) Vaccination with neutrophil inhibitory factor reduces the fecundity of the hookworm, Ancylostoma ceylanicum. Parasite Immunol 23(5):237–249. https://doi.org/10.1046/j.1365-3024.2001.00383.x

    Article  CAS  PubMed  Google Scholar 

  22. Anbu KA, Joshi P (2008) Identification of a 55 kDa Haemonchus contortus excretory/secretory glycoprotein as a neutrophil inhibitory factor. Parasite Immunol 30:23–30. https://doi.org/10.1111/j.1365-3024.2007.00995.x

    Article  CAS  PubMed  Google Scholar 

  23. Keir PA, Brown DM, Clouter-Baker A, Harcus YM, Proudfoot L (2004) Inhibition of neutrophil recruitment by ES of Nippostrongylus brasiliensis. Parasite Immunol 26:137–139. https://doi.org/10.1111/j.0141-9838.2004.00692.x

    Article  CAS  PubMed  Google Scholar 

  24. Pastrana DV, Raghvan N, Fitzgerald P, Eisinger SW, Metz C, Bucala R, Schleimer RP, Bickel C, Scott AL (1998) Filarial nematode parasites secrete a homologue of the human cytokine macrophage migration inhibitory factor. Infection Immunity 66(12):5955–5963. https://doi.org/10.1128/IAI.66.12.5955-5963.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan THP, Edgerton SAV, Kumari R et al (2001) Macrophage migration inhibitory factor of the parasitic nematode Trichinella spiralis. Biochem J 357:373–383. https://doi.org/10.1042/0264-6021:3570373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vermeire JJ, Cho Y, Lolis E, Bucala R, Cappello M (2008) Orthologs of macrophage migration inhibitory factor from parasitic nematodes. Trends Parasitol 24:355–363. https://doi.org/10.1016/j.pt.2008.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nisbet AJ, Bell N, McNeilly TN et al (2010) A macrophage migration-inhibitory factor-like tautomerase from Teladorsagia circumcincta (Nematoda: Strongylida). Parasite Immunol 32:503–511. https://doi.org/10.1111/j.1365-3024.2010.01215.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rathore DK, Suchitra S, Saini M, Singh BP, Joshi P (2006) Identification of a 66 kDa Haemonchus contortus excretory/secretory antigen that inhibits host monocytes. Vet Parasitol 138:291–300. https://doi.org/10.1016/j.vetpar.2006.01.055

    Article  CAS  PubMed  Google Scholar 

  29. Sorobetea D, Svensson-Frej M, Grencis R (2018) Immunity to gastrointestinal nematode infections. Nature 11(2):304–315. https://doi.org/10.1038/ml.2017.113

    Article  CAS  Google Scholar 

  30. Semnani RT, Liu AY, Sabzevari H et al (2003) Brugia malayi microfilariae induce cell death in human dendritic cells, inhibit their ability to make IL-12 and IL-10 and reduce their capacity to activate CD+ T cells. J Immunol 171(4):1950–1960. https://doi.org/10.4049/jimmunol.171.4.1950

    Article  CAS  PubMed  Google Scholar 

  31. McNeilly TN, Rocchi M, Bartley Y et al (2013) Suppression of ovine lymphocyte activation by Teladorsagia circumcinita larval excretory-secretory products. Vet Res 44:70. https://doi.org/10.1186/1297-9716-44-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu M, Tian X, Yang Z et al (2020) Proteomic analysis revealed T cell hyporesponsiveness induced by Haemonchus contortus excretory and secretory proteins. Vet Res 51:65. https://doi.org/10.1186/s13567-020-00790-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pritchard DI, Brown A, Kasper G et al (1999) A hookworm allergen which strongly resembles calreticulin. Parasite Immunol 21:439–450. https://doi.org/10.1046/j.1365-3024.1999.00238.x

    Article  CAS  PubMed  Google Scholar 

  34. Kasper G et al (2001) A calreticulin-like molecule from the human hookworm Necator americanus interacts with C1q and the cytoplasmic signaling domain of some integrins. Parasite Immunol 23:141–152. https://doi.org/10.1046/j.1365-3024.2001.00366.x

    Article  CAS  PubMed  Google Scholar 

  35. Suchitra S, Joshi P (2005) Characterization of Haemonchus contortus calreticulin suggests its role in feeding and immune evasion by the parasite. Biochem Biophys Acta 1722:293–303. https://doi.org/10.1016/j.bbagen.2004.12.020

    Article  CAS  PubMed  Google Scholar 

  36. Suchitra S, Anbu KA, Rathore DK, Mahawar M, Singh BP, Joshi P (2008) Haemonchus contortus calreticulin binds to C-reactive protein of its host, a novel survival strategy of the parasite. Parasite Immunol 30:371–374. https://doi.org/10.1111/j.1365-3024.2008.01028.x

    Article  CAS  PubMed  Google Scholar 

  37. Vedamurthy GV, Sahoo S, Devi IK, Murugavel S, Joshi P (2015) The N-terminal segment of glyceraldehyde-3-phosphate dehydrogenase of Haemonchus contortus interacts with complement C1q and C3. Parasite Immunol 37:568–578. https://doi.org/10.1111/pim.12273

    Article  CAS  PubMed  Google Scholar 

  38. Parvathy R, Mishra PKK, Joshi P (2019) Defining the complement C3 binding site and the antigenic region of Haemonchus contortus GAPDH. Parasite Immunol 41:e12611. https://doi.org/10.1111/pim.12611

    Article  CAS  Google Scholar 

  39. Zhang Z, Yang J, Wei J, Yang Y, Chen X, Zhao X, Gu Y, Cui S, Zhu X (2011) Trichinella spiralis paramyosin binds to C8 and C9 and protects the tissue-dwelling nematode from being attacked by host complement. PLoS Negl Trop Dis 5:1–9. https://doi.org/10.1371/journal.pntd.0001225

    Article  CAS  Google Scholar 

  40. Ahmed UK, Malher NC, Iqbal AJ, Riyami-Al L, Harnett W, Raynes JG (2016) The carbohydrate-linked phosphorylcholine of the parasitic nematode product ES-62 modulates complement activation. J Biol Chem 291:11939–11953. https://doi.org/10.1074/jbc.M115.702746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hewitson JP, Ivens AC, Harcus Y, Filbey KJ, McSorley HJ, Murray J, Bridgett S, Ashford D, Dowle AA, Maizels RM (2013) Secretion of protective antigens by tissue-stage nematode larvae revealed by proteomic analysis and vaccination-induced sterile immunity. PLoS Pathog 9:e1003492. https://doi.org/10.1371/journal.ppat.1003492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hewitson JP, Filbey KJ, Esser-von Bieren J, Camberis M, Schwartz C, Murray J, Reynolds LA, Blair N, Robertson E, Harcus Y, Boon L (2015) Concerted activity of IgG1 antibodies and IL-4/IL-25-dependent effector cells trap helminth larvae in the tissues following vaccination with defined secreted antigens, providing sterile immunity to challenge infection. PLoS Pathog 11:e1004676. https://doi.org/10.1371/journal.ppat.1004676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kalyanasundaram R, Balumuri P (2011) Multivalent vaccine formulation with BmVAL-1 and BmALT-2 confer significant protection against challenge infections with Brugia malayi in mice and jirds. Res Rep Trop Med 2:45–56. https://doi.org/10.2147/RRTM.S13679

    Article  PubMed Central  Google Scholar 

  44. MacDonald A, Tawe W, Leon O, Cao L, Liu J, Oksov Y et al (2004) Ov-ASP-1, the Onchocerca volvulus homologue of the activation associated secreted protein family is immunostimulatory and can induce protective anti-larval immunity. Parasite Immunol 26:53–62. https://doi.org/10.1111/j.0141-9838.2004.00685.x

    Article  CAS  PubMed  Google Scholar 

  45. Meyvis Y, Geldhof P, Gevaert K, Timmerman E, Vercruysse J, Claerebout E (2007) Vaccination against Ostertagia ostertagi with subfractions of the protective ES-thiol fraction. Vet Parasitol 149:239–245. https://doi.org/10.1016/j.vetpar.2007.08.014

    Article  CAS  PubMed  Google Scholar 

  46. Xiao S, Zhan B, Xue J, Goud GN, Loukas A, Liu Y, Williamson A, Liu S, Deumic V, Hotez P (2008) The evaluation of recombinant hookworm antigens as vaccines in hamsters (Mesocricetus auratus) challenged with human hookworm, Necator americanus. Exp parasitol 118:32–40. https://doi.org/10.1016/j.exppara.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  47. Duarte A, Maleita C, Egas C, Abrantes I, Curtis R (2017) Significant effects of RNAi silencing of the venom allergen-like protein (Mhi-vap-1) of the root-knot nematode Meloidogyne hispanica in the early events of infection. Plant Pathol 66:1329–1337. https://doi.org/10.1111/ppa.12673

    Article  CAS  Google Scholar 

  48. Yang Y, Wen YJ, Cai YN et al (2015) (2015) Serine proteases of parasitic helminths. Korean J Parasitol 53:1–11. https://doi.org/10.3347/kjp.2015.53.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Caffrey C, Goupil L, Rebello KM, Dalton JP, Smith D (2018) Cysteine proteases as digestive enzymes in parasitic helminths. PLOS Negl Trop Dis 12(8):e0005840. https://doi.org/10.1371/journal.pntd.0005840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hotterbeekx A, Perneel J, Vieri MK, Colebunders R, Kumar-Singh S (2021) The secretome of filarial nematodes and its role in host–parasite interactions and pathogenicity in Onchocerciasis-associated epilepsy. Front Cell Infect Microbiol 11:360. https://doi.org/10.3389/fcimb.2021.662766

    Article  CAS  Google Scholar 

  51. Karanu FN, Rurangirwa FR, McGuire TC, Jasmer DP (1993) Haemonchus contortus: identification of proteases with diverse characteristics in adult worm excretory-secretory products. Exp Parasitol 77:362–371. https://doi.org/10.1006/expr.1993.1093

    Article  CAS  PubMed  Google Scholar 

  52. Knox DP (2011) Proteases in blood feeding nematodes and their potential as vaccine candidates. In: Robinson MW, Dalton JP (eds) Cysteine proteases of pathogenic organisms. Advances in experimental medicine and biology. Springer, Boston, pp 155–176. https://doi.org/10.1007/978-1-4419-8414-2_10

    Chapter  Google Scholar 

  53. Haffner A, Guilavogui AZ, Tischendorf FW, Brattig NW (1998) Onchocera volvulus: microfilariae secrete elastinolytic and males non-elastinolytic matrix-degrading serine and metalloproteases. Exp Parasitol 90:26–33. https://doi.org/10.1006/expr.1998.4313

    Article  CAS  PubMed  Google Scholar 

  54. Pokharel DR, Srikanth E, Rathaur S (2009) Screening of different classes of proteases in microfilarial and adult stages of Setaria cervi. Parasitol Res 104:1399–1405. https://doi.org/10.1007/s00436-009-1336-x

    Article  PubMed  Google Scholar 

  55. Moreno Y, Geary TG (2008) Stage-and gender-specific proteomic analysis of Brugia malayi excretory-secretory products. PLoS Neg Trop Dis 2:e326. https://doi.org/10.1371/journal.pntd.0000326

    Article  CAS  Google Scholar 

  56. Romaris F, North SJ, Gagliardo LF et al (2002) A putative serine protease among the excretory-secretory glycoproteins of L1 Trichinella spiralis. Mol Biochem Parasitol 122:149–160. https://doi.org/10.1016/s0166-6851(02)00094-4

    Article  CAS  PubMed  Google Scholar 

  57. Xu J, Liu RD, Bai SJ et al (2020) Molecular characterization of a Trichinella spiralis aspartic protease and its facilitation role in larval invasion of host intestinal epithelial cells. PLoS Neg Trop Dis 14(4):e0008269. https://doi.org/10.1371/journal.pntd.0008269

    Article  CAS  Google Scholar 

  58. Hasnain SZ, McCukin MA, Grencis RK, Thornton DJ (2012) Serine protease(s) secreted by the nematode Trichuris muris degrade the mucus barrier. PLOS Negl Trop Dis 6:e1856. https://doi.org/10.1371/journal.pntd.0001856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Williamson AL, Lustigman S, Oksov Y, Deumic V, Plieskatt J, Mendez S, Zhan B, Bottazzi ME, Hotez PJ, Loukas A (2006) Ancylostoma caninum MTP-1, an astacin-like metalloprotease secreted by infective hookworm larvae, is involved in tissue migration. Infect immun 74:961–967. https://doi.org/10.1128/IAI.74.2.961-967.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Soblik H, Younis AE, Mitreva M, Renard BY, Kirchner M, Geisinger F, Steen H, Brattig NW (2011) Life cycle stage-resolved proteomic analysis of the excretome/secretome from Strongyloides ratti—identification of stage-specific proteases. Mol Cell Proteom. https://doi.org/10.1074/mcp.M111.010157

    Article  Google Scholar 

  61. Manoury B, Gregory WF, Maizels RM, Watts C (2001) Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Curr Biol 11:447–451. https://doi.org/10.1016/s0960-9822(01)00118-x

    Article  CAS  PubMed  Google Scholar 

  62. Cooper D, Eleftherianos I (2016) Parasitic nematode immunomodulatory strategies: recent advances and perspectives. Pathogens 5:58. https://doi.org/10.3390/pathogens5030058

    Article  CAS  PubMed Central  Google Scholar 

  63. Wang Y, Wu L, Liu X, Wang S, Ehsan M, Yan R, Song X, Xu L, Li X (2017) Characterization of a secreted cystatin of the parasitic nematode Haemonchus contortus and its immune-modulatory effect on goat monocytes. Parasites Vectors 10:1–2. https://doi.org/10.1186/s13071-017-2368-1

    Article  CAS  Google Scholar 

  64. Ditgen D, Anandarajah EM, Meissner KA, Brattig N, Wrenger C, Liebau E (2014) Harnessing the helminth secretome for therapeutic immunomodulators. BioMed Res Int 964350:1–14. https://doi.org/10.1155/2014/964350

    Article  CAS  Google Scholar 

  65. Milstone AM, Harrison LM, Bungiro RD, Kuzmic̆ P, Cappello MA (2000) Broad spectrum Kunitz type serine protease inhibitor secreted by the hookworm Ancylostoma ceylanicum. J Biol Chem 275:29391–29399. https://doi.org/10.1074/jbc.M002715200

    Article  CAS  PubMed  Google Scholar 

  66. Ranasinghe SL, McManus DP (2017) Protease inhibitors of parasitic flukes: emerging roles in parasite survival and immune defence. Trends Parasitol 33:400–413. https://doi.org/10.1016/j.pt.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  67. Harischandra H, Yuan W, Loghry HJ, Zamanian M, Kimber MJ (2018) Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin. PLoS Neg Trop Dis 12:e0006438. https://doi.org/10.1371/journal.pntd.0006438

    Article  CAS  Google Scholar 

  68. Price WE, Shehadeh Z, Thompson GH, Underwood LD, Jacobson ED (1969) Effects of acetylcholine on intestinal blood flow and motility. Am J Physiol 216:343–347. https://doi.org/10.1152/ajplegacy.1969.216.2.343

    Article  CAS  PubMed  Google Scholar 

  69. Zaccone P et al (2006) Parasitic worms and inflammatory diseases. Parasite Immunol 28:515–523. https://doi.org/10.1111/j.1365-3024.2006.00879.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ramanan D et al (2012) Helminth infection promotes colonization resistance via type 2 immunity. Science 28:551–556. https://doi.org/10.1126/science.aaf3229

    Article  CAS  Google Scholar 

  71. Helmby H (2015) Human helminth therapy to treat inflammatory disorders- where do we stand? BMC Immunol 16:12. https://doi.org/10.1186/s12865-015-0074-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Harnett MM, Melendez AJ, Harnett W (2009) The therapeutic potential of the filarial nematode-derived immunomodulator, ES-62 in inflammatory disease. Clin Exp Immunol 159:256–267. https://doi.org/10.1111/j.1365-2249.2009.04064.x

    Article  CAS  PubMed  Google Scholar 

  73. Hunter MM, McKay DM (2004) Helminth as therapeutic agents for inflammatory bowl disease. Aliment Pharmacol Ther 19:167–177. https://doi.org/10.1111/j.0269-2813.2004.01803.x

    Article  CAS  PubMed  Google Scholar 

  74. Wu Z, Wang L, Tang Y, Sun X (2017) Parasite-derived proteins for the treatment of allergies and autoimmune diseases. Fron Microbiol. https://doi.org/10.3389/fmicb.2017.02164

    Article  Google Scholar 

  75. Elliot DE, Weinstock JV (2017) Nematodes and human therapeutic trials for inflammatory disease. Parasite Immunol 39:e12407. https://doi.org/10.1111/pim.12407

    Article  Google Scholar 

  76. Louis-Philippe L et al (2018) Analysis of the Trichuris suis excretory/secretory proteins as a function of life cycle stage and their immunomodulatory properties. Sci Reports 8:15921. https://doi.org/10.1038/s41598-018-34174-4

    Article  CAS  Google Scholar 

  77. Duhrsen-Henkle K, Kampkotter A (2001) Antioxidant enzyme families in parasitic nematodes. Mol Biochem Parasitol 114:129–142. https://doi.org/10.1016/S0166-6851(01)00252-3

    Article  Google Scholar 

  78. Sommer A, Rickert R, Fischer P, Steinhart H, Walter RD, Liebau E (2003) A dominant role for extracellular Glutathione-S-transferase from Onchocera volvulus is the production of prostaglandin D2. Infect Immun 71:3603–3606. https://doi.org/10.1128/IAI.71.6.3603-3606.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhao L, Shao S, Chen Y et al (2017) Trichinella spiralis calreticulin binds human complement C1q as an immune evasion strategy. Front Immunol. https://doi.org/10.3389/fimmun2017.00636

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kennedy MW, Garside LH, Goodrick LE, McDermott L, Brass A, Price NC, Kelly SM, Cooper A, Bradley JE (1997) The Ov20 protein of the parasitic nematode Onchocerca volvulus: a structurally novel class of small helix-rich retinol-binding proteins. J Biol Chem 272:29442–29448. https://doi.org/10.1074/jbc.272.47.29442

    Article  CAS  PubMed  Google Scholar 

  81. Nijo Y, Mishra PKK, Joshi P (2020) Enhancing the stability of Haemonchus contortus Glyceraldehyde-3-phosphate dehydrogenase and binding of host albumin to the parasite enzyme. Acta Parasit 65:980–984. https://doi.org/10.2478/s11686-020-00212-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research in the Principal author’s laboratory was generously funded by the department of Biotechnology, Govt. of India, New Delhi. We thank all our lab mates who contributed to H. contortus research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paritosh Joshi or Prasanta Kumar K. Mishra.

Ethics declarations

Conflict of Interest

The authors declare there is no conflict of interest regarding the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, P., Mishra, P.K.K. Functional Diversity of the Excretory/Secretory Proteins of Nematode Parasites. Acta Parasit. 67, 619–627 (2022). https://doi.org/10.1007/s11686-022-00523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-022-00523-7

Keywords

Navigation