Skip to main content
Log in

Occurrence of Hookworm and the First Molecular and Morphometric Identification of Uncinaria stenocephala in Dogs in Central Europe

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Hookworms are hematophagous parasitic nematodes that occur in the intestinal tract of various mammals, including humans. The objective of this work was to develop a two-step morphology-molecular analysis-based strategy to identify the genus and the species of eggs and larvae of the Ancylostomatidae family in dogs, which were kept in various living conditions in Slovakia.

Methods

Faecal samples were collected from 270 dogs kept in two different shelters (160 samples) and in a marginalised Roma community (110 samples). Faecal samples were processed using the flotation method. Microscopically positive faecal samples with hookworm eggs were subjected to a coproculture and the hatched larvae were identified morphometrically, prior to molecular testing. The faecal samples with hookworm´s eggs and individual larvae were identified by a molecular assay based on the amplification of the 18S ribosomal RNA gene fragment. Further, species-specific primer sets were designed for the internal transcribed spacer (ITS 1 region) and the mitochondrial cytochrome c oxidase subunit I (COX1) gene section.

Results

Hookworm eggs were microscopically detected in 9.6% (26/270) of the total number of faecal samples. The prevalence in the Roma settlement was higher, 14.5% (16/110), than in shelters, 6.3% (10/160). Using PCR and subsequent Sanger sequencing, we identified the canine hookworm species Uncinaria stenocephala in all positive samples.

Conclusion

Our results have provided new data on the molecular identification of the neglected species U. stenocephala affecting dogs in Slovakia and supplemented the missing information on the prevalence and incidence of hookworms in dogs in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bowman DD, Montgomery SP, Zajac AM, Eberhard ML, Kazacosa KR (2010) Hookworms of dogs and cats as agents of cutaneous larva migrans. Trends Parasitol 26:162–167. https://doi.org/10.1016/j.pt.2010.01.005

    Article  PubMed  Google Scholar 

  2. Awadallah MAI, Salem LA (2015) Zoonotic enteric parasites transmitted from dogs in Egypt with special concern to Toxocara canis infection. Vet World 8:946–957. https://doi.org/10.14202/vetworld.2015.946-957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bowman DD, Lynn RC, Eberhard ML (2003) Georgis’ parasitology for veterinarians. St Louis ES, USA

    Google Scholar 

  4. Sowemimo OA (2009) The prevalence and intensity of gastrointestinal parasites of dogs in Ile-Ife, Nigeria. J Helmintol 83:27–31. https://doi.org/10.1017/S0022149X08067229

    Article  Google Scholar 

  5. Reinemeyer CR (2016) Formulations and clinical uses of pyrimidine compounds in domestic animals. In: Pyrantel parasiticide therapy in humans and domestic animals. Academic Press, United States, pp 67–107. https://doi.org/10.1016/B978-0-12-801449-3.00015-6

    Chapter  Google Scholar 

  6. Demkowska-Kutrzepa M, Szczepaniak K, Dudko P, Roczeń-Karczmarz M, Studzińska M, Żyła S, Tomczuk K (2018) Determining the occurrence of the Uncinaria stenocephala and Ancylostoma caninum nematode invasion in dogs in Poland, with special emphasis on the Lublin region. Polskie Towarzystwo Nauk Weterynaryjnych 74:526–531. https://doi.org/10.21521/mw.6104

    Article  Google Scholar 

  7. Merino-Tejedor A, Nejsum P, Mkupasi EM, Johansen MV, Olsen A (2019) Molecular identification of zoonotic hookworm species in dog faeces from Tanzania. J Helmintol 93:313–318. https://doi.org/10.1017/S0022149X18000263

    Article  CAS  Google Scholar 

  8. Miller TA (1968) Pathogenesis and immunity in hookworm infection. Trans R Soc Trop Med Hyg 62:473–489

    Article  CAS  Google Scholar 

  9. Pawlowski ZS, Schad GA, Stott GJ (1991) Hookworm infection and anemia. Approaches to prevention and control. World Health Organization, Geneva: 96

  10. Spraker TR, DeLong RL, Lyons ET, Melin SR (2007) Hookworm enteritis with bacteremia in California sea lion pups on san miguel Island. J Wildl Dis 43:179–188. https://doi.org/10.7589/0090-3558-43.2.179

    Article  PubMed  Google Scholar 

  11. Deplazes P, Eckert J, Mathis A, von Samson-Himmelstjerna G, Zahner H (2016) Parasitology in veterinary medicine. Wageningen, Netherlands

    Book  Google Scholar 

  12. Bajer A, Bednarska M, Rodo A (2011) Risk factors and control of intestinal parasite infections in sled dogs in Poland. Vet Parasitol 175:343–350. https://doi.org/10.1016/j.vetpar.2010.10.029

    Article  PubMed  Google Scholar 

  13. Massetti L, Colella V, Zendejas PA, Ng-Nguyen D, Harriott L, Marwedel L, Wiethoelter A, Traub RJ (2020) High-throughput multiplex qPCRs for the surveillance of zoonotic species of canine hookworms. PLOS Negl Trop Dis 14:1–14. https://doi.org/10.1371/journal.pntd.0008392

    Article  CAS  Google Scholar 

  14. Dove WE (1928) Further studies on Ancylostoma braziliense and the etiology of creeping eruption. Am J Epidemiol 15:664–711. https://doi.org/10.1093/oxfordjournals.aje.a117837

    Article  Google Scholar 

  15. Kwon IH, Kim HS, Lee JH, Coi MH, Chai JY, Uchiyama FN, Nawa Y, Cho KH (2003) A serologically diagnosed human case of cutaneous larva migrans caused by Ancylostoma caninum. Korean J Parasitol 41:233–237. https://doi.org/10.3347/kjp.2003.41.4.233

    Article  PubMed  PubMed Central  Google Scholar 

  16. Traub RJ, Inpankaew T, Sutthikornachai Ch, Sukthana Y, Thompson RCA (2008) PCR-based coprodiagnostic tools reveal dogs as reservoirs of zoonotic ancylostomiasis caused by Ancylostoma ceylanicum in temple communities in Bangkok. Vet Parasitol 155:67–73. https://doi.org/10.1016/j.vetpar.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  17. Heukelbach J, Wilcke T, Feldmeier H (2004) Cutaneous larva migrans (creeping eruption) in an urban slum in Brazil. Int J Dermatol 43:511–515. https://doi.org/10.1111/j.1365-4632.2004.02152.x

    Article  PubMed  Google Scholar 

  18. Mackenstedt U, Jenkins D, Roming T (2015) The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. Int J Parasitol Parasites Wildl 4:71–79. https://doi.org/10.1016/j.ijppaw.2015.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vanparijs O, Hermans L, Flaes L (1991) Helminth and protozoan parasites in dogs and cats in Belgium. Vet Parasitol 38:67–73. https://doi.org/10.1016/0304-4017(91)90010-S

    Article  CAS  PubMed  Google Scholar 

  20. Dubná S, Langrová I, Nápravník J, Jankovská I, Vadlejch J, Pekár S, Fechtner J (2007) The prevalence of intestinal parasites in dogs from Prague, rural areas, and shelters of the Czech Republic. Vet Parasitol 145:120–128. https://doi.org/10.1016/j.vetpar.2006.11.006

    Article  PubMed  Google Scholar 

  21. Xhaxhiu D, Kusi I, Rapti D, Kondi E, Postoli R, Rinaldi L, Dimitrova ZM, Visser M, Knaus M, Rehbein S (2011) Principal intestinal parasites of dogs in Tirana, Albania. Parasitol Res 108:341–353. https://doi.org/10.1007/s00436-010-2067-8

    Article  PubMed  Google Scholar 

  22. Ferreira A, Alho AM, Otero D, Gomes L, Nijsse R, Overgaauw PAM, deCarvalho LM (2017) Urban dog parks as sources of canine parasites: contamination rates and pet owner behaviours in Lisbon. Portugal J Environ Public Health. https://doi.org/10.1155/2017/5984086

    Article  PubMed  Google Scholar 

  23. Kostopoulou D, Claerebout E, Arvanitis D, Ligda P, Voutzourakis N, Casaert S, Sotiraki S (2017) Abundance, zoonotic potential and risk factors of intestinal parasitism amongst dog and cat populations: the scenario of Crete, Greece. Parasit Vectors 10:1–12. https://doi.org/10.1186/s13071-017-1989-8

    Article  Google Scholar 

  24. La Torre F, Di Cesare A, Simonato G, Cassini R, di Regalbono AF (2018) Prevalence of zoonotic helminths in Italian house dogs. J Infect Dev Ctries 12:666–672. https://doi.org/10.3855/jidc.9865

    Article  PubMed  Google Scholar 

  25. Silva V, Silva J, Goncalves M, Brandao C, Brito NV (2020) Epidemiological survey on intestinal helminths of stray dogs in Guimarães, Portugal. J Parasit Dis 44:869–876. https://doi.org/10.1007/s12639-020-01252-2

    Article  PubMed Central  Google Scholar 

  26. Raičević JG, Pavlović IN, Galonja-Coghill TA (2021) Canine intestinal parasites as a potential source of soil contamination in the public areas of Kruševac, Serbia. J Infect Dev Ctries 15:147–154. https://doi.org/10.3855/jidc.12694

    Article  PubMed  Google Scholar 

  27. Iliev PT, Kirakova ZT, Tonev AS (2020) Preliminary study on the prevalence of endoparasite infections and vector-borne diseases in outdoor dogs in Bulgaria. Helminthologia 57:171–178. https://doi.org/10.2478/helm-2020-0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamminga N, Bierman WFW, deVries P (2009) Cutaneous larva migrans acquired in Brittany, France. Emerg Infect Dis 15:1856–1858. https://doi.org/10.3201/eid1511.090261

    Article  PubMed  PubMed Central  Google Scholar 

  29. Baple K, Clayton J (2015) Hookworm-related cutaneous larva migrans acquired in the UK. BMJ Case Rep. https://doi.org/10.1136/bcr-2015-210165

    Article  PubMed  PubMed Central  Google Scholar 

  30. Del Giudice PD, Hakimi S, Vadenbos F, Magana C, Hubiche T (2019) Autochthonous cutaneous larva migrans in France and Europe. Acta Derm Venereol 99:805–808. https://doi.org/10.2340/00015555-3217

    Article  PubMed  Google Scholar 

  31. Patterson CRS, Kersey PJW (2003) Cutaneous larva migrans acquired in England. Clin Exp Dermatol 28:671–672. https://doi.org/10.1046/j.1365-2230.2003.01347.x

    Article  CAS  PubMed  Google Scholar 

  32. Zimmermann R, Vombemale P, Piens MA, Le Coz C (1995) Cutaneous larva migrans, autochthonous in France. Apropos of a case. Annales Dermatol Venereol 122:711–714

    CAS  Google Scholar 

  33. Galanti B, Fusco FM, Nardiello S (2002) Outbreak of cutaneous larva migrans in Naples, southern Italy. Trans R Soc Trop Med Hyg 96:491–492. https://doi.org/10.1016/s0035-9203(02)90415-3

    Article  CAS  PubMed  Google Scholar 

  34. Veraldi S, Rizzitelli G (1999) Effectiveness of a new therapeutic regimen in cutaneous larva migrans. Eur J Dermatol 9:352–353

    CAS  PubMed  Google Scholar 

  35. Karadjian G, Kaestner C, Laboutiére L, Adicéam E, Wagner T, Johne A, Thomas M, Polack B, Mayer-Scholl A, Vallée I (2020) A two-step morphology-PCR strategy for the identification of nematode larvae recovered from muscles after artificial digestion at meat inspection. Parasitol Res 119:4113–4122. https://doi.org/10.1007/s00436-020-06899-7

    Article  PubMed  Google Scholar 

  36. Garcia LS, Bruckner DA (2016) Diagnostic medical parasitology, 6th edn. ASM Press, USA

    Book  Google Scholar 

  37. Lesniak I, Franz M, Heckmann I, Greenwood A, Hofer H, Krone O (2017) Surrogate host: Hunting dogs and recolonizing grey wolves share their endoparasites. IJP Parasites Wildl 6:278–286. https://doi.org/10.1016/j.ijppaw.2017.09.001

    Article  Google Scholar 

  38. Hu M, Chilton NB, Zhu X, Gasser RB (2002) Single-strand conformation polymorphism-based analysis of mitochondrial cytochrome c oxidase subunit 1 reveals significant substructuring in hookworm populations. Electrophoresis 23:27–34. https://doi.org/10.1002/1522-2683(200201)23:1%3c27::AID-ELPS27%3e3.0.CO;2-7

    Article  PubMed  Google Scholar 

  39. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kladkempetch D, Tangtrongsup S, Tiwananthagorn S (2020) Ancylostoma ceylanicum: the Neglected Zoonotic Parasite of Community Dogs in Thailand and Its Genetic Diversity among Asian Countries. Animals 10:2154. https://doi.org/10.3390/ani10112154

    Article  PubMed Central  Google Scholar 

  41. Ngui R, Mahdy MA, Chua KH, Traub R, Lim YA (2013) Genetic characterization of the partial mitochondrial cytochrome oxidase c subunit I (cox 1) gene of the zoonotic parasitic nematode, Ancylostoma ceylanicum from humans, dogs and cats. Acta Trop 128:154–157. https://doi.org/10.1016/j.actatropica.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  42. Gibbs HC (1961) Studies on the life cycle and developmental morphology of Dochmoides stenocephala (Railliet 1884) (Ancylostomatidae: Nematoda). Can J Zool 39:325–348. https://doi.org/10.1016/j.vetpar.2008.05.001

    Article  CAS  Google Scholar 

  43. Barutzki D, Schaper R (2011) Results of parasitological examinations of faecal samples from cats and dogs in Germany between 2003 and 2010. Parasitol Res 109:45–60. https://doi.org/10.1007/s00436-011-2402-8

    Article  Google Scholar 

  44. Becker AC, Rohen M, Epe C, Schneider T (2012) Prevalence of endoparasites in stray and fostered dogs and cats in Northern Germany. Parasitol Res 111:849–857. https://doi.org/10.1007/s00436-012-2909-7

    Article  PubMed  Google Scholar 

  45. Blaszkowska J, Wojcik A, Kurnatowski P, Szwabe K (2013) Geohelminth egg contamination of children’s play areas in the city of Lodz (Poland). Vet Parasitol 192:228–233. https://doi.org/10.1016/j.vetpar.2012.09.033

    Article  PubMed  Google Scholar 

  46. Štrkolcová G, Mravcová K, Barbušinová E, Mucha R, Várady M, Goldová M (2019) Prevalence of intestinal parasites in children living in various living conditions in Slovakia. J Pediatr Perinatol Child Health 3:174–185. https://doi.org/10.26502/jppch.74050028

    Article  Google Scholar 

  47. Šmigová J, Papajová I, Šoltys J, Pipiková J, Šmiga Ľ, Šnábel V, Takáčová J, Takáč L (2021) The occurence of endoparasites in Slovakian household dogs and cats. Vet Res Commun. https://doi.org/10.1007/s11259-021-09804-4

    Article  PubMed  Google Scholar 

  48. Zhan B, Li T, Xiao S, Zheng F, Hawdon JM (2001) Species-specific identification of human hookworms by PCR of the mitochondrial cytochrome oxidase I gene. J Parasitol 87:1227–1229. https://doi.org/10.1645/0022-3395(2001)087[1227:SSIOHH]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  49. Miyazaki I (1991) Helminthic zoonoses. International Medical Foundation of Japan, Tokyo

    Google Scholar 

  50. Mulinge E, Njenga SM, Odongo D, Magambo J, Zeyhle E, Mbae C, Kagendo D, Kanyi H, Traub RJ, Wassermann M, Kern P, Romig T (2019) Molecular identification of zoonotic hookworms in dogs from four counties of Kenya. J Helminthol 94:e43. https://doi.org/10.1017/S0022149X1900018X

    Article  CAS  PubMed  Google Scholar 

  51. Jung BK, Lee JY, Chang T, Song H, Chai JY (2020) Rare case of enteric Ancylostoma caninum Hookworm Infection, South Korea. Emerg Infect Dis 26:181–183. https://doi.org/10.3201/eid2601.191335

    Article  PubMed  PubMed Central  Google Scholar 

  52. De Ley P, De Ley IT, Morris K, Abebe E, Mundo-Ocampo M, Yoder M, Heras J, Waumann D, Rocha-Olivares A, Burr AHB, Baldwin J, Thomas WK (2005) An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philos Trans R Soc Lond B Biol Sci 360:1945–1958. https://doi.org/10.1098/rstb.2005.1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Porazinska DL, Giblin-Davis RM, Faller L, Farmerie W, Kanzaki N, Morris K, Powers TO, Tucker AE, Sung W, Thomas WK (2009) Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecul Ecol Resour 9:1439–1450. https://doi.org/10.1111/j.1755-0998.2009.02611.x

    Article  CAS  Google Scholar 

  54. Avise J (1994) Molecular markers, natural history and evolution, 2nd edn. Sinauer Associates, Inc. Publishers, Sunderland

    Book  Google Scholar 

  55. Traub RJ (2004) Application of a species-specific PCR-RFLP to identify Ancylostoma eggs directly from canine faeces. Vet Parasitol 123:245–255. https://doi.org/10.1016/j.vetpar.2004.05.026

    Article  CAS  PubMed  Google Scholar 

  56. Fülleborn F (1926) Behaviour of Hookworm Larvae in Infection per os. Archiv fur Schiffs-und Tropenhygiene 30:638–653

    Google Scholar 

  57. Chen JM, Zhang XM, Wang LJ, Chen Y, Du Q, Cai JT (2012) Overt gastrointestinal bleeding because of hookworm infection. Asian Pac J Trop Med 5:331–332. https://doi.org/10.1016/S1995-7645(12)60051-0

    Article  PubMed  Google Scholar 

  58. Ayinmode AB, Obede OO, Olayemi E (2016) Prevalence of potentially zoonotic gastrointestinal parasites in canine faeces in Ibadan, Nigeria. Ghana Med J 50:201–206. https://doi.org/10.4314/gmj.v50i4.2

    Article  PubMed  PubMed Central  Google Scholar 

  59. Štrkolcová G, Goldová M, Bocková E, Mojžišová J (2017) The roundworm Strongyloides stercoralis in children, dogs, and soil inside and outside a segregated settlement in Eastern Slovakia: frequent but hardly detectable parasite. Parasitol Res 116:891–900. https://doi.org/10.1007/s00436-016-5362-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the projects of the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, VEGA 1/0536/18.

Author information

Authors and Affiliations

Authors

Contributions

GŠ, KM were responsible for laboratory examination of samples and evaluation of results; GŠ, KM, EM were involved in collection of samples and data; AŠ, RM provided the molecular identification; GŠ, EM contributed to the preparation of the manuscript; all authors reviewed the manuscript and participated in the final version.

Corresponding author

Correspondence to Gabriela Štrkolcová.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The study reported here was conducted in compliance with the relevant local laws and regulations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Štrkolcová, G., Mravcová, K., Mucha, R. et al. Occurrence of Hookworm and the First Molecular and Morphometric Identification of Uncinaria stenocephala in Dogs in Central Europe. Acta Parasit. 67, 764–772 (2022). https://doi.org/10.1007/s11686-021-00509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-021-00509-x

Keywords

Navigation