Skip to main content
Log in

Talin and kindlin: the one-two punch in integrin activation

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Abstract Proper cell-cell and cell-matrix contacts mediated by integrin adhesion receptors are important for development, immune response, hemostasis and wound healing. Integrins pass trans-membrane signals bidirectionally through their regulated affinities for extracellular ligands and intracellular signaling molecules. Such bidirectional signaling by integrins is enabled by the conformational changes that are often linked among extracellular, transmembrane and cytoplasmic domains. Here, we review how talin-integrin and kindlin-integrin interactions, in cooperation with talin-lipid and kindlin-lipid interactions, regulate integrin affinities and how the progress in these areas helps us understand integrin-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110(6): 673–687

    CAS  PubMed  Google Scholar 

  2. Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. J Cell Sci 2006; 119(Pt 19): 3901–3903

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Giancotti FG, Ruoslahti E. Integrin signaling. Science 1999; 285(5430): 1028–1032

    CAS  PubMed  Google Scholar 

  4. Du XP, Plow EF, Frelinger AL 3rd, O’Toole TE, Loftus JC, Ginsberg MH. Ligands “activate” integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Cell 1991; 65(3): 409–416

    CAS  PubMed  Google Scholar 

  5. Zhu J, Carman CV, Kim M, Shimaoka M, Springer TA, Luo BH. Requirement of α and β subunit transmembrane helix separation for integrin outside-in signaling. Blood 2007; 110(7): 2475–2483

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 2004; 104(6): 1606–1615

    CAS  PubMed  Google Scholar 

  7. Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 2003; 301(5640): 1720–1725

    CAS  PubMed  Google Scholar 

  8. Bodeau AL, Berrier AL, Mastrangelo AM, Martinez R, LaFlamme SE. A functional comparison of mutations in integrin β cytoplasmic domains: effects on the regulation of tyrosine phosphorylation, cell spreading, cell attachment and β1 integrin conformation. J Cell Sci 2001; 114(Pt 15): 2795–2807

    CAS  PubMed  Google Scholar 

  9. Berrier AL, Mastrangelo AM, Downward J, Ginsberg M, LaFlamme SE. Activated R-ras, Rac1, PI 3-kinase and PKCepsilon can each restore cell spreading inhibited by isolated integrin β1 cytoplasmic domains. J Cell Biol 2000; 151(7): 1549–1560

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Diaz-Gonzalez F, Forsyth J, Steiner B, Ginsberg MH. Transdominant inhibition of integrin function. Mol Biol Cell 1996; 7(12): 1939–1951

    CAS  PubMed Central  PubMed  Google Scholar 

  11. LaFlamme SE, Thomas LA, Yamada SS, Yamada KM. Single subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions in receptor localization, cell spreading and migration, and matrix assembly. J Cell Biol 1994; 126(5): 1287–1298

    CAS  PubMed  Google Scholar 

  12. LaFlamme SE, Akiyama SK, Yamada KM. Regulation of fibronectin receptor distribution. J Cell Biol 1992; 117(2): 437–447

    CAS  PubMed  Google Scholar 

  13. Cluzel C, Saltel F, Lussi J, Paulhe F, Imhof BA, Wehrle-Haller B. The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J Cell Biol 2005; 171(2): 383–392

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc Natl Acad Sci USA 2003; 100(23): 13298–13302

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 1995; 131(3): 791–805

    CAS  PubMed  Google Scholar 

  16. Miyamoto S, Akiyama SK, Yamada KM. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 1995; 267(5199): 883–885

    CAS  PubMed  Google Scholar 

  17. Hirahashi J, Mekala D, Van Ziffle J, Xiao L, Saffaripour S, Wagner DD, Shapiro SD, Lowell C, Mayadas TN. Mac-1 signaling via Src-family and Syk kinases results in elastase-dependent thrombohemorrhagic vasculopathy. Immunity 2006; 25(2): 271–283

    CAS  PubMed  Google Scholar 

  18. Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, Constantin G, Laudanna C, Berton G. The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating β2 integrin affinity and valency in neutrophils, but are required for β2 integrin-mediated outside-in signaling involved in sustained adhesion. J Immunol 2006; 177(1): 604–611

    CAS  PubMed  Google Scholar 

  19. Mocsai A, Zhou M, Meng F, Tybulewicz VL, Lowell CA. Syk is required for integrin signaling in neutrophils. Immunity 2002; 16(4): 547–558

    CAS  PubMed  Google Scholar 

  20. McNamee HP, Ingber DE, Schwartz MA. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J Cell Biol 1993; 121(3): 673–678

    CAS  PubMed  Google Scholar 

  21. Schaller MD, Otey CA, Hildebrand JD, Parsons JT. Focal adhesion kinase and paxillin bind to peptides mimicking β integrin cytoplasmic domains. J Cell Biol 1995; 130(5): 1181–1187

    CAS  PubMed  Google Scholar 

  22. Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA. Type I g phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 2002; 420(6911): 89–93

    CAS  PubMed  Google Scholar 

  23. Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S, Chang S, Guo J, Wenk MR, De Camilli P. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 g by the FERM domain of talin. Nature 2002; 420(6911): 85–89

    PubMed  Google Scholar 

  24. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 2005; 6(1): 56–68

    CAS  PubMed  Google Scholar 

  25. Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 2008; 10(9): 1039–1050

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcgRIIa as the ITAM-bearing receptor mediating αIIbβ3 outside-in integrin signaling in human platelets. Blood 2008; 112(7): 2780–2786

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Mocsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat Immunol 2006; 7(12): 1326–1333

    CAS  PubMed  Google Scholar 

  28. Abtahian F, Bezman N, Clemens R, Sebzda E, Cheng L, Shattil SJ, Kahn ML, Koretzky GA. Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells. Mol Cell Biol 2006; 26(18): 6936–6949

    CAS  PubMed Central  PubMed  Google Scholar 

  29. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. Stretching single talin rod molecules activates vinculin binding. Science 2009; 323(5914): 638–641

    PubMed  Google Scholar 

  30. Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol 2008; 10(9): 1062–1068

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 2007; 179(5): 1043–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Saunders RM, Holt MR, Jennings L, Sutton DH, Barsukov IL, Bobkov A, Liddington RC, Adamson EA, Dunn GA, Critchley DR. Role of vinculin in regulating focal adhesion turnover. Eur J Cell Biol 2006; 85(6): 487–500

    CAS  PubMed  Google Scholar 

  33. Even-Ram S, Artym V, Yamada KM. Matrix control of stem cell fate. Cell 2006; 126(4): 645–647

    CAS  PubMed  Google Scholar 

  34. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677–689

    CAS  PubMed  Google Scholar 

  35. Kim C, Ye F, Ginsberg MH. Regulation of integrin activation. Annu Rev Cell Dev Biol 2011; 27(1): 321–345

    CAS  PubMed  Google Scholar 

  36. Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010; 11(4): 288–300

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 1996; 88(3): 907–914

    CAS  PubMed  Google Scholar 

  38. Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998; 91(8): 2645–2657

    CAS  PubMed  Google Scholar 

  39. Abram CL, Lowell CA. The ins and outs of leukocyte integrin signaling. Annu Rev Immunol 2009; 27(1): 339–362

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Pouwels J, Nevo J, Pellinen T, Ylanne J, Ivaska J. Negative regulators of integrin activity. J Cell Sci 2012; 125(Pt 14): 3271–3280

    CAS  PubMed  Google Scholar 

  41. Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol 2007; 25(1): 619–647

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 2007; 19(5): 495–507

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Luo BH, Springer TA. Integrin structures and conformational signaling. Curr Opin Cell Biol 2006; 18(5): 579–586

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Arnaout MA, Mahalingam B, Xiong JP. Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol 2005; 21(1): 381–410

    CAS  PubMed  Google Scholar 

  45. Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct 2002; 31(1): 485–516

    CAS  PubMed  Google Scholar 

  46. Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell 2008; 32(6): 849–861

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αVβ3. Science 2001; 294(5541): 339–345

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002; 110(5): 599–611

    CAS  PubMed  Google Scholar 

  49. Chen X, Xie C, Nishida N, Li Z, Walz T, Springer TA. Requirement of open headpiece conformation for activation of leukocyte integrin αXβ2. Proc Natl Acad Sci USA 2010; 107(33): 14727–14732

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Luo BH, Strokovich K, Walz T, Springer TA, Takagi J. Allosteric beta1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain. J Biol Chem 2004; 279(26): 27466–27471

    CAS  PubMed  Google Scholar 

  51. Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 2002; 296(5565): 151–155

    CAS  PubMed  Google Scholar 

  52. Adair BD, Xiong JP, Maddock C, Goodman SL, Arnaout MA, Yeager M. Three-dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin. J Cell Biol 2005; 168(7): 1109–1118

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Ye F, Liu J, Winkler H, Taylor KA. Integrin αIIbβ3 in a membrane environment remains the same height after Mn2+ activation when observed by cryoelectron tomography. J Mol Biol 2008; 378(5): 976–986

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Mehta RJ, Diefenbach B, Brown A, Cullen E, Jonczyk A, Gussow D, Luckenbach GA, Goodman SL. Transmembrane-truncated αvβ3 integrin retains high affinity for ligand binding: evidence for an “inside-out” suppressor? Biochem J 1998; 330(Pt 2): 861–869

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Partridge AW, Liu S, Kim S, Bowie JU, Ginsberg MH. Transmembrane domain helix packing stabilizes integrin αIIbβ3 in the low affinity state. J Biol Chem 2005; 280(8): 7294–7300

    CAS  PubMed  Google Scholar 

  56. Luo BH, Carman CV, Takagi J, Springer TA. Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proc Natl Acad Sci USA 2005; 102(10): 3679–3684

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Li W, Metcalf DG, Gorelik R, Li R, Mitra N, Nanda V, Law PB, Lear JD, Degrado WF, Bennett JS. A push-pull mechanism for regulating integrin function. Proc Natl Acad Sci USA 2005; 102(5): 1424–1429

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Li R, Mitra N, Gratkowski H, Vilaire G, Litvinov R, Nagasami C, Weisel JW, Lear JD, DeGrado WF, Bennett JS. Activation of integrin αIIbβ3 by modulation of transmembrane helix associations. Science 2003; 300(5620): 795–798

    CAS  PubMed  Google Scholar 

  59. Kim C, Lau TL, Ulmer TS, Ginsberg MH. Interactions of platelet integrin αIIb and β3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood 2009; 113(19): 4747–4753

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhu J, Luo BH, Barth P, Schonbrun J, Baker D, Springer TA. The structure of a receptor with two associating transmembrane domains on the cell surface: integrin αIIbβ3. Mol Cell 2009; 34(2): 234–249

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Luo BH, Springer TA, Takagi J. A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol 2004; 2(6): e153

    PubMed Central  PubMed  Google Scholar 

  62. Lau TL, Kim C, Ginsberg MH, Ulmer TS. The structure of the integrin αIIbβ3 transmembrane complex explains integrin transmembrane signalling. EMBO J 2009; 28(9): 1351–1361

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Li R, Babu CR, Lear JD, Wand AJ, Bennett JS, DeGrado WF. Oligomerization of the integrin αIIbβ3: roles of the transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA 2001; 98(22): 12462–12467

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ, Ginsberg MH. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem 1996; 271(12): 6571–6574

    CAS  PubMed  Google Scholar 

  65. Kim C, Schmidt T, Cho EG, Ye F, Ulmer TS, Ginsberg MH. Basic amino-acid side chains regulate transmembrane integrin signalling. Nature 2012; 481(7380): 209–213

    CAS  Google Scholar 

  66. Critchley DR. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 2009; 38(1): 235–254

    CAS  PubMed  Google Scholar 

  67. Elliott PR, Goult BT, Kopp PM, Bate N, Grossmann JG, Roberts GC, Critchley DR, Barsukov IL. The Structure of the talin head reveals a novel extended conformation of the FERM domain. Structure 2010; 18(10): 1289–1299

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Calderwood DA, Fujioka Y, de Pereda JM, Garcia-Alvarez B, Nakamoto T, Margolis B, McGlade CJ, Liddington RC, Ginsberg MH. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci USA 2003; 100(5): 2272–2277

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Calderwood DA, Yan B, de Pereda JM, Alvarez BG, Fujioka Y, Liddington RC, Ginsberg MH. The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 2002; 277(24): 21749–21758

    CAS  PubMed  Google Scholar 

  70. Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem 2009; 284(8): 5119–5127

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ, Ginsberg MH. Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3. Curr Biol 2006; 16(18): 1796–1806

    CAS  PubMed  Google Scholar 

  72. Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH. The Talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 1999; 274(40): 28071–28074

    CAS  PubMed  Google Scholar 

  73. Petrich BG, Marchese P, Ruggeri ZM, Spiess S, Weichert RA, Ye F, Tiedt R, Skoda RC, Monkley SJ, Critchley DR, Ginsberg MH. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 2007; 204(13): 3103–3111

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Nieswandt B, Moser M, Pleines I, Varga-Szabo D, Monkley S, Critchley D, Fassler R. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 2007; 204(13): 3113–3118

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, Sligar SG, Taylor KA, Ginsberg MH. Recreation of the terminal events in physiological integrin activation. J Cell Biol 2010; 188(1): 157–173

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH, Calderwood DA. Talin binding to integrin beta tails: a final common step in integrin activation. Science 2003; 302(5642): 103–106

    CAS  PubMed  Google Scholar 

  77. Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Campbell ID. Structural basis of integrin activation by talin. Cell 2007; 128(1): 171–182

    CAS  PubMed  Google Scholar 

  78. Garcia-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, Ginsberg MH, Liddington RC. Structural determinants of integrin recognition by talin. Mol Cell 2003; 11(1): 49–58

    CAS  PubMed  Google Scholar 

  79. Tanentzapf G, Brown NH. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nat Cell Biol 2006; 8(6): 601–606

    CAS  PubMed  Google Scholar 

  80. Petrich BG, Fogelstrand P, Partridge AW, Yousefi N, Ablooglu AJ, Shattil SJ, Ginsberg MH. The antithrombotic potential of selective blockade of talin-dependent integrin αIIbβ3 (platelet GPIIb-IIIa) activation. J Clin Invest 2007; 117(8): 2250–2259

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Haling JR, Monkley SJ, Critchley DR, Petrich BG. Talindependent integrin activation is required for fibrin clot retraction by platelets. Blood 2011; 117(5): 1719–1722

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Goult BT, Bouaouina M, Elliott PR, Bate N, Patel B, Gingras AR, Grossmann JG, Roberts GC, Calderwood DA, Critchley DR, Barsukov IL. Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation. EMBO J 2010; 29(6): 1069–1080

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT, Lowe ED, Vakonakis I, Bate N, Critchley DR, Ginsberg MH, Campbell ID. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J 2009; 28(22): 3623–3632

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Kim C, Ye F, Hu X, Ginsberg MH. Talin activates integrins by altering the topology of the β transmembrane domain. J Cell Biol 2012; 197(5): 605–611

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Kalli AC, Wegener KL, Goult BT, Anthis NJ, Campbell ID, Sansom MS. The structure of the talin/integrin complex at a lipid bilayer: an NMR and MD simulation study. Structure 2010; 18(10): 1280–1288

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Moser M, Legate KR, Zent R, Fassler R. The tail of integrins, talin, and kindlins. Science 2009; 324(5929): 895–899

    CAS  PubMed  Google Scholar 

  87. Rogalski TM, Mullen GP, Gilbert MM, Williams BD, Moerman DG. The UNC-112 gene in Caenorhabditis elegans encodes a novel component of cell-matrix adhesion structures required for integrin localization in the muscle cell membrane. J Cell Biol 2000; 150(1): 253–264

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Ussar S, Wang HV, Linder S, Fassler R, Moser M. The Kindlins: subcellular localization and expression during murine development. Exp Cell Res 2006; 312(16): 3142–3151

    CAS  PubMed  Google Scholar 

  89. Ussar S, Moser M, Widmaier M, Rognoni E, Harrer C, Genzel-Boroviczeny O, Fassler R. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet 2008; 4(12): e1000289

    PubMed Central  PubMed  Google Scholar 

  90. Kloeker S, Major MB, Calderwood DA, Ginsberg MH, Jones DA, Beckerle MC. The Kindler syndrome protein is regulated by transforming growth factor-β and involved in integrin-mediated adhesion. J Biol Chem 2004; 279(8): 6824–6833

    CAS  PubMed  Google Scholar 

  91. Montanez E, Ussar S, Schifferer M, Bosl M, Zent R, Moser M, Fassler R. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev 2008; 22(10): 1325–1330

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Harburger DS, Bouaouina M, Calderwood DA. Kindlin-1 and-2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J Biol Chem 2009; 284(17): 11485–11497

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Ma YQ, Qin J, Wu C, Plow EF. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J Cell Biol 2008; 181(3): 439–446

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, Jurdic P, Fassler R, Moser M. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J Cell Biol 2011; 192(5): 883–897

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S, Moser M, Metin A, Fried M, Tomlinson I, Hogg N. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 2009; 15(3): 306–312

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Moser M, Bauer M, Schmid S, Ruppert R, Schmidt S, Sixt M, Wang HV, Sperandio M, Fassler R. Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nat Med 2009; 15(3): 300–305

    CAS  PubMed  Google Scholar 

  97. Malinin NL, Zhang L, Choi J, Ciocea A, Razorenova O, Ma YQ, Podrez EA, Tosi M, Lennon DP, Caplan AI, Shurin SB, Plow EF, Byzova TV. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med 2009; 15(3): 313–318

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Kuijpers TW, van de Vijver E, Weterman MA, de Boer M, Tool AT, van den Berg TK, Moser M, Jakobs ME, Seeger K, Sanal O, Unal S, Cetin M, Roos D, Verhoeven AJ, Baas F. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood 2009; 113(19): 4740–4746

    CAS  PubMed  Google Scholar 

  99. Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med 2008; 14(3): 325–330

    CAS  PubMed  Google Scholar 

  100. Bandyopadhyay A, Rothschild G, Kim S, Calderwood DA, Raghavan S. Functional differences between kindlin-1 and kindlin-2 in keratinocytes. J Cell Sci 2012; 125(Pt 9): 2172–2184

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Qu H, Tu Y, Shi X, Larjava H, Saleem MA, Shattil SJ, Fukuda K, Qin J, Kretzler M, Wu C. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J Cell Sci 2011; 124(Pt 6): 879–891

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Yates LA, Lumb CN, Brahme NN, Zalyte R, Bird LE, De Colibus L, Owens RJ, Calderwood DA, Sansom MS, Gilbert RJ. Structural and functional characterization of the kindlin-1 pleckstrin homology domain. J Biol Chem 2012; 287(52): 43246–43261

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Liu J, Fukuda K, Xu Z, Ma YQ, Hirbawi J, Mao X, Wu C, Plow EF, Qin J. Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J Biol Chem 2011; 286(50): 43334–43342

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Hart R, Stanley P, Chakravarty P, Hogg N. The kindlin 3 pleckstrin homology domain has an essential role in lymphocyte function-associated antigen 1 (LFA-1) integrin-mediated B cell adhesion and migration. J Biol Chem 2013; 288(21): 14852–14862

    CAS  PubMed  Google Scholar 

  105. Goult BT, Bouaouina M, Harburger DS, Bate N, Patel B, Anthis NJ, Campbell ID, Calderwood DA, Barsukov IL, Roberts GC, Critchley DR. The structure of the N-terminus of kindlin-1: a domain important for αIIbβ3 integrin activation. J Mol Biol 2009; 394(5): 944–956

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Perera HD, Ma YQ, Yang J, Hirbawi J, Plow EF, Qin J. Membrane binding of the N-terminal ubiquitin-like domain of kindlin-2 is crucial for its regulation of integrin activation. Structure 2011; 19(11): 1664–1671

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Bouaouina M, Goult BT, Huet-Calderwood C, Bate N, Brahme NN, Barsukov IL, Critchley DR, Calderwood DA. A conserved lipid-binding loop in the kindlin FERM F1 domain is required for kindlin-mediated αIIbβ3 integrin coactivation. J Biol Chem 2012; 287(10): 6979–6990

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Ye F, Petrich BG. Kindlin: helper, co-activator, or booster of talin in integrin activation? Curr Opin Hematol 2011; 18(5): 356–360

    CAS  PubMed  Google Scholar 

  109. Kahner BN, Kato H, Banno A, Ginsberg MH, Shattil SJ, Ye F. Kindlins, integrin activation and the regulation of talin recruitment to αIIbβ3. PLoS ONE 2012; 7(3): e34056

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Bledzka K, Liu J, Xu Z, Perera HD, Yadav SP, Bialkowska K, Qin J, Ma YQ, Plow EF. Spatial coordination of kindlin-2 with talin head domain in interaction with integrin β cytoplasmic tails. J Biol Chem 2012; 287(29): 24585–24594

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Lefort CT, Rossaint J, Moser M, Petrich BG, Zarbock A, Monkley SJ, Critchley DR, Ginsberg MH, Fassler R, Ley K. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood 2012; 119(18): 4275–4282

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Morrison VL, MacPherson M, Savinko T, Lek HS, Prescott A, Fagerholm SC. The β2 integrin-kindlin-3 interaction is essential for T-cell homing but dispensable for T-cell activation in vivo. Blood 2013; 122(8): 1428-1436

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Margadant C, Kreft M, de Groot DJ, Norman JC, Sonnenberg A. Distinct roles of talin and kindlin in regulating integrin α5β1 function and trafficking. Curr Biol 2012; 22(17): 1554–1563

    CAS  PubMed  Google Scholar 

  114. Ye F, Petrich BG, Anekal P, Lefort CT, Kasirer-Friede A, Shattil SJ, Ruppert R, Moser M, Fassler R, Ginsberg MH. The mechanism of kindlin-mediated activation of integrin αIIbβ3. Curr Biol 2013; 23(22): 2288–2295

    CAS  PubMed  Google Scholar 

  115. Feng C, Li YF, Yau YH, Lee HS, Tang XY, Xue ZH, Zhou YC, Lim WM, Cornvik TC, Ruedl C, Shochat SG, Tan SM. Kindlin-3 mediates integrin αLβ2 outside-in signaling, and it interacts with scaffold protein receptor for activated-C kinase 1 (RACK1). J Biol Chem 2012; 287(14): 10714–10726

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Manevich-Mendelson E, Feigelson SW, Pasvolsky R, Aker M, Grabovsky V, Shulman Z, Kilic SS, Rosenthal-Allieri MA, Ben-Dor S, Mory A, Bernard A, Moser M, Etzioni A, Alon R. Loss of Kindlin-3 in LAD-III eliminates LFA-1 but not VLA-4 adhesiveness developed under shear flow conditions. Blood 2009; 114(11): 2344–2353

    CAS  PubMed  Google Scholar 

  117. Bottcher RT, Stremmel C, Meves A, Meyer H, Widmaier M, Tseng HY, Fassler R. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat Cell Biol 2012; 14(6): 584–592

    PubMed  Google Scholar 

  118. Tu Y, Wu S, Shi X, Chen K, Wu C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 2003; 113(1): 37–47

    CAS  PubMed  Google Scholar 

  119. Mackinnon AC, Qadota H, Norman KR, Moerman DG, Williams BD. C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr Biol 2002; 12(10): 787–797

    CAS  PubMed  Google Scholar 

  120. Qadota H, Moerman DG, Benian GM. A molecular mechanism for the requirement of PAT-4 (integrin-linked kinase (ILK)) for the localization of UNC-112 (Kindlin) to integrin adhesion sites. J Biol Chem 2012; 287(34): 28537–28551

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Ithychanda SS, Das M, Ma YQ, Ding K, Wang X, Gupta S, Wu C, Plow EF, Qin J. Migfilin, a molecular switch in regulation of integrin activation. J Biol Chem 2009; 284(7): 4713–4722

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Moik DV, Janbandhu VC, Fassler R. Loss of migfilin expression has no overt consequences on murine development and homeostasis. J Cell Sci 2011; 124(Pt 3): 414–421

    CAS  PubMed  Google Scholar 

  123. Hato T, Pampori N, Shattil SJ. Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin αIIbβ3. J Cell Biol 1998; 141(7): 1685–1695

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Mould AP, Garratt AN, Puzon-McLaughlin W, Takada Y, Humphries MJ. Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin α5β1. Biochem J 1998; 331(Pt 3): 821–828

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Puzon-McLaughlin W, Yednock TA, Takada Y. Regulation of conformation and ligand binding function of integrin α5β1 by the β1 cytoplasmic domain. J Biol Chem 1996; 271(28): 16580–16585

    CAS  PubMed  Google Scholar 

  126. Phillips DR, Agin PP. Platelet membrane defects in Glanzmann’s thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J Clin Invest 1977; 60(3): 535–545

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol 1974; 28(2): 253–260

    CAS  PubMed  Google Scholar 

  128. Nurden AT. Glanzmann thrombasthenia. Orphanet J Rare Dis 2006; 1(1): 10

    PubMed Central  PubMed  Google Scholar 

  129. Lanza F, Stierle A, Fournier D, Morales M, Andre G, Nurden AT, Cazenave JP. A new variant of Glanzmann’s thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein IIIa 214Arg→214Trp mutation. J Clin Invest 1992; 89(6): 1995–2004

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger AL 3rd, Ginsberg MH. A β3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 1990; 249(4971): 915–918

    CAS  PubMed  Google Scholar 

  131. Chen YP, Djaffar I, Pidard D, Steiner B, Cieutat AM, Caen JP, Rosa JP. Ser-752→Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of platelet integrin αIIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA 1992; 89(21): 10169–10173

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Wang R, Shattil SJ, Ambruso DR, Newman PJ. Truncation of the cytoplasmic domain of β3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin αIIbβ3 complex. J Clin Invest 1997; 100(9): 2393–2403

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Ruiz C, Liu CY, Sun QH, Sigaud-Fiks M, Fressinaud E, Muller JY, Nurden P, Nurden AT, Newman PJ, Valentin N. A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GPIIb-IIIa (αIIbβ3) integrin receptor locked in a high-affinity state and a Glanzmann thrombasthenia-like phenotype. Blood 2001; 98(8): 2432–2441

    CAS  PubMed  Google Scholar 

  134. Chen P, Melchior C, Brons NH, Schlegel N, Caen J, Kieffer N. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human β3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in αIIbβ3 activation. J Biol Chem 2001; 276(42): 38628–38635

    CAS  PubMed  Google Scholar 

  135. Hanna S, Etzioni A. Leukocyte adhesion deficiencies. Ann N Y Acad Sci 2012; 1250(1): 50–55

    CAS  PubMed  Google Scholar 

  136. Lai-Cheong JE, McGrath JA. Kindler syndrome. Dermatol Clin 2010; 28(1): 119–124

    CAS  PubMed  Google Scholar 

  137. D’Souza MA, Kimble RM, McMillan JR. Kindler syndrome pathogenesis and fermitin family homologue 1 (kindlin-1) function. Dermatol Clin 2010; 28(1): 115–118

    PubMed  Google Scholar 

  138. Heinemann A, He Y, Zimina E, Boerries M, Busch H, Chmel N, Kurz T, Bruckner-Tuderman L, Has C. Induction of phenotype modifying cytokines by FERMT1 mutations. Hum Mutat 2011; 32(4): 397–406

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Ye or Mark H. Ginsberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, F., Snider, A.K. & Ginsberg, M.H. Talin and kindlin: the one-two punch in integrin activation. Front. Med. 8, 6–16 (2014). https://doi.org/10.1007/s11684-014-0317-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-014-0317-3

Keywords

Navigation