Skip to main content
Log in

Molecular markers and pathogenically targeted therapy in non-small cell lung cancer

  • Review
  • Published:
Frontiers of Medicine in China Aims and scope Submit manuscript

Abstract

Lung cancer is one of the most common human cancers and the number one cancer killer in the United States. In general, lung cancer includes small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), but NSCLC accounts for approximately 90% of lung cancer. The early diagnosis and therapy of lung cancer still presents a big challenge because validated screening tools, which can improve current early detection to reduce mortality from lung cancer, do not exist. Over the last decade, molecular genetic abnormalities have been described in NSCLC, including chromosomal aberrations, overexpression of oncogenes, and deletion and/or mutations in tumor suppressor genes. These molecular markers in NSCLC demonstrated close associations with the development of lung cancer such as Ras, the epidermal growth factor receptor (EGFR, or c-erbB-1), HER2 (c-erbB-2), c-Met, and Bcl-2. Therefore, this information may be applied for early cancer detection, classification, novel targeted therapy, and prognosis in NSCLC. Recent clinical data have revealed that targeted therapy might be the second-line therapy as an alternative approach. Currently, the targeted therapies are mainly focused on two lung cancer pathways, the EGFR and the vascular endothelial growth factor (VEGF) pathways. Some clinical trials are very encouraging, but some of them are not. However, these trials have not identified a subgroup of NSCLC with biomarkers. Therefore, it is very important to select NSCLC patients with biomarkers to match targeted agents so that we can further identify effectiveness of targeted therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkin D M, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin, 2005, 55(2): 74–108

    Article  PubMed  Google Scholar 

  2. Alberg A J, Samet J M. Epidemiology of lung cancer. Chest, 2003, 123: 21S

    Article  PubMed  Google Scholar 

  3. Zang E A, Wynder E L. Differences in lung cancer risk between men and women: examination of the evidence. J Natl Cancer Inst, 1996, 88(34): 183–192

    Article  PubMed  CAS  Google Scholar 

  4. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun M J. Cancer statistics, 2008. CA Cancer J Clin, 2008, 58(2): 71–96

    Article  PubMed  Google Scholar 

  5. Molina J R, Adjei A A, Jett J R. Advances in chemotherapy of nonsmall cell lung cancer. Chest, 2006, 130(4): 1211–1219

    Article  PubMed  CAS  Google Scholar 

  6. Mariadason J M, Augenlicht L H, Arango D. Microarray analysis in the clinical management of cancer. Hematol Oncol Clin North Am, 2003, 17(2): 377–387

    Article  PubMed  Google Scholar 

  7. Anglim P P, Alonzo T A, Laird-Offringa I A. DNA methylationbased biomarkers for early detection of non-small cell lung cancer: an update. Mol Cancer, 2008, 7: 81

    Article  PubMed  CAS  Google Scholar 

  8. Mountain C F. New prognostic factors in lung cancer. Biologic prophets of cancer cell aggression. Chest, 1995, 108(1): 246–254

    Article  PubMed  CAS  Google Scholar 

  9. Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol, 1998, 16(3): 1207–1217

    PubMed  CAS  Google Scholar 

  10. Strauss GM, Kwiatkowski D J, Harpole D H, Lynch T J, Skarin AT, Sugarbaker D J. Molecular and pathologic markers in stage I nonsmall cell carcinoma of the lung. J Clin Oncol, 1995, 13(5): 1265–1279

    PubMed  CAS  Google Scholar 

  11. Rosell R, Felip E, Garcia-Campelo R, Balana C. The biology of nonsmall-cell lung cancer: identifying new targets for rational therapy. Lung Cancer, 2004, 46(2): 135–148

    Article  PubMed  CAS  Google Scholar 

  12. Devereux T R, Taylor J A, Barrett J C. Molecular mechanisms of lung cancer. Interaction of environmental and genetic factors. Giles F. Filley Lecture. Chest, 1996, 109(3 Suppl): 14S–19S

    CAS  Google Scholar 

  13. Killary A M, Wolf M E, Giambernardi T A, Naylor S L. Definition of a tumor suppressor locus within human chromosome 3p21-p22. Proc Natl Acad Sci USA, 1992, 89(22): 10877–10881

    Article  PubMed  CAS  Google Scholar 

  14. Otterson G, Lin A, Kay F. Genetic etiology of lung cancer. Oncology (Huntingt), 1992, 6(9): 97–104, 107; discussion 108, 111-112

    PubMed  CAS  Google Scholar 

  15. Hirao T, Nelson H H, Ashok T D, Wain J C, Mark E J, Christiani D C,Wiencke J K, Kelsey K T. Tobacco smoke-induced DNA damage and an early age of smoking initiation induce chromosome loss at 3p21 in lung cancer. Cancer Res, 2001, 61(2): 612–615

    PubMed  CAS  Google Scholar 

  16. Hibi, K, Takahashi, T, Yamakawa, K, Ueda R, Sekido Y, Ariyoshi Y, Suyama M, Takagi H, Nakamura Y, Takahashi T. Three distinct regions involved in 3p deletion in human lung cancer. Oncogene, 1992, 7: 445–449

    PubMed  CAS  Google Scholar 

  17. Hibi K, Takahashi T, Yamakawa K, Ueda R, Sekido Y, Ariyoshi Y, Suyama M, Takagi H, Nakamura Y, Takahashi T. Deletion mapping of the short arm of chromosome 8 in non-small cell lung carcinoma. Genes Chromosomes Cancer, 1993, 7(3): 85–88

    Google Scholar 

  18. Nakachi K, Imai K, Hayashi S, Watanabe J, Kawajiri K. Genetic susceptibility to squamous cell carcinoma of the lung in relation to cigarette smoking dose. Cancer Res, 1991, 51(19): 5177–5180

    PubMed  CAS  Google Scholar 

  19. Ambrosone C B, Rao U, Michalek A M, Cummings K M, Mettlin C J. Lung cancer histologic types and family history of cancer. Analysis of histologic subtypes of 872 patients with primary lung cancer. Cancer, 1993, 72(4): 1192–1198

    Article  PubMed  CAS  Google Scholar 

  20. Slebos R J, Kibbelaar R E, Dalesio O, Kooistra A, Stam J, Meijer C J, Wagenaar S S, Vanderschueren R G, van Zandwijk N, Mooi W J. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med, 1990, 323(9): 561–565

    Article  PubMed  CAS  Google Scholar 

  21. Rodenhuis S, Slebos R J. Clinical significance of ras oncogene activation in human lung cancer. Cancer Res, 1992, 52(Suppl): 2665–2669

    Google Scholar 

  22. Graziano S L, Gamble G P, Newman N B, Abbott L Z, Rooney M, Mookherjee S, Lamb M L, Kohman L J, Poiesz B J. Prognostic significance of K-ras codon 12 mutations in patients with resected stage I and II non-small-cell lung cancer. J Clin Oncol, 1999, 17(2): 668–675

    PubMed  CAS  Google Scholar 

  23. Graziano S L, Gamble G P, Newman N B, Abbott L Z, Rooney M, Mookherjee S, Lamb M L, Kohman L J, Poiesz B J. Cigarette smoking is strongly associated with mutation of the k-ras gene in patients with primary adenocarcinomaof the lung. Cancer, 2001, 92 (6): 1525–1530

    Article  Google Scholar 

  24. Velu T J, Beguinot L, Vass W C, Willingham M C, Merlino G T, Pastan I, Lowy D R. Epidermal-growth-factor-dependent transformation by a human EGF receptor proto-oncogene. Science, 1987, 238(4832): 1408–1410

    Article  PubMed  CAS  Google Scholar 

  25. To C T, Tsao M S. The roles of hepatocyte growth factor/scatter factor and met receptor in human cancers (Review). Oncol Rep, 1998, 5(5): 1013–1024

    PubMed  CAS  Google Scholar 

  26. Ichimura, E, Maeshima, A, Nakajima, T, Nakamura, T. Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res, 1996, 87(10): 1063–1069

    PubMed  CAS  Google Scholar 

  27. Hockenbery D, Nuñez G, Milliman C, Schreiber R D, Korsmeyer S J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 1990, 348(6299): 334–336

    Article  PubMed  CAS  Google Scholar 

  28. Anton R C, Brown RW, Younes M, Gondo M M, Stephenson M A, Cagle P T. Absence of prognostic significance of bcl-2 immunopositivity in non-small cell lung cancer: analysis of 427 cases. Hum Pathol, 1997, 28(9): 1079–1082

    Article  PubMed  CAS  Google Scholar 

  29. Ohmura Y, Aoe M, Andou A, Shimizu N. Telomerase activity and Bcl-2 expression in non-small cell lung cancer. Clin Cancer Res, 2000, 6(8): 2980–2987

    PubMed  CAS  Google Scholar 

  30. Laudanski J, Chyczewski L, Niklinska W E, Kretowska M, Furman M, Sawicki B, Niklinski J. Expression of bcl-2 protein in non-small cell lung cancer: correlation with clinicopathology and patient survival. Neoplasma, 1999, 46(1): 25–30

    PubMed  CAS  Google Scholar 

  31. Groeger A M, Caputi M, Esposito V, De Luca A, Salat A, Murabito M, Giordano G G, Baldi F, Giordano A, Wolner E. Bcl-2 protein expression correlates with nodal status in non small cell lung cancer. Anticancer Res, 1999, 19(1B): 821–824

    PubMed  CAS  Google Scholar 

  32. Pezzella F, Turley H, Kuzu I, Tungekar M F, Dunnill M S, Pierce C B, Harris A, Gatter K C, Mason D Y. bcl-2 protein in non-small cell lung carcinoma. N Engl J Med, 1993, 329(10): 690–694

    Article  PubMed  CAS  Google Scholar 

  33. Silvestrini R, Costa A, Lequaglie C, Mochen C, Veneroni S, Leutner M, Ravasi G. Bcl-2 protein and prognosis in patients with potentially curable non-small-cell lung cancer. Virchows Arch, 1998, 432(5): 441–444

    Article  PubMed  CAS  Google Scholar 

  34. Huang C I, Neuberg D, Johnson B E, Wei J Y, Christiani D C. Expression of bcl-2 protein is associated with shorter survival in nonsmall cell lung carcinoma. Cancer, 2003, 98(1): 135–143

    Article  PubMed  CAS  Google Scholar 

  35. Sharp T V, Munoz F, Bourboulia D, Presneau N, Darai E, Wang H W, Cannon M, Butcher D N, Nicholson A G, Klein G, Imreh S, Boshoff C. LIM domains-containing protein 1 (LIMD1), a tumor suppressor encoded at chromosome 3p21.3, binds pRB and represses E2F-driven transcription. Proc Natl Acad Sci USA, 2004, 101(47): 16531–16536

    Article  PubMed  CAS  Google Scholar 

  36. Zhang S Y, Liu S C, Johnson D G, Klein-Szanto A J. E2F-1 gene transfer enhances invasiveness of human head and neck carcinoma cell lines. Cancer Res, 2000, 60(21): 5972–5976

    PubMed  CAS  Google Scholar 

  37. Banerjee D, Gorlick R, Liefshitz A, Danenberg K, Danenberg P C, Danenberg P V, Klimstra D, Jhanwar S, Cordon-Cardo C, Fong Y, Kemeny N, Bertino J R. Levels of E2F-1 expression are higher in lung metastasis of colon cancer as compared with hepatic metastasis and correlate with levels of thymidylate synthase. Cancer Res, 2000, 60(9): 2365–2367

    PubMed  CAS  Google Scholar 

  38. Lane D P. Cancer. p53, guardian of the genome. Nature, 1992, 358 (6381): 15–16

    Article  PubMed  CAS  Google Scholar 

  39. Tsao M S, Aviel-Ronen S, Ding K, Lau D, Liu N, Sakurada A, Whitehead M, Zhu C Q, Livingston R, Johnson D H, Rigas J, Seymour L, Winton T, Shepherd F A. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol, 2007, 25(33): 5240–5247

    Article  PubMed  Google Scholar 

  40. Knudson A G Jr. The ninth Gordon Hamilton-Fairley memorial lecture. Hereditary cancers: clues to mechanisms of carcinogenesis. Br J Cancer, 1989, 59(5): 661–666

    PubMed  Google Scholar 

  41. Xu H J, Quinlan D C, Davidson A G, Hu S X, Summers C L, Li J, Benedict W F. Altered retinoblastoma protein expression and prognosis in early-stage non-small-cell lung carcinoma. J Natl Cancer Inst, 1994, 86(9): 695–699

    Article  PubMed  CAS  Google Scholar 

  42. Xu H J, Cagle P T, Hu S X, Li J, Benedict W F. Altered retinoblastoma and p53 protein status in non-small cell carcinoma of the lung: potential synergistic effects on prognosis. Clin Cancer Res, 1996, 2(7): 1169–1176

    PubMed  CAS  Google Scholar 

  43. Shapiro G I, Rollins B J. p16INK4A as a human tumor suppressor. Biochim Biophys Acta, 1996, 18; 1242(3): 165–169

    Google Scholar 

  44. Hannon G J, Beach D. p15INK4B is a potential effector of TGFbeta-induced cell cycle arrest. Nature, 1994, 371(6494): 257–261

    Article  PubMed  CAS  Google Scholar 

  45. Shapiro G I, Edwards C D, Kobzik L, Godleski J, Richards W, Sugarbaker D J, Rollins B J. Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res, 1995, 55(3): 505–509

    PubMed  CAS  Google Scholar 

  46. Kratzke R A, Greatens T M, Rubins J B, Maddaus M A, Niewoehner D E, Niehans G A, Geradts J. Rb and p16INK4a expression in resected non-small cell lung tumors. Cancer Res, 1996, 56(15): 3415–3420

    PubMed  CAS  Google Scholar 

  47. Gonzalez-Quevedo R, Iniesta P, Moran A, de Juan C, Sanchez-Pernaute A, Fernandez C, Torres A, Diaz-Rubio E, Balibrea J L, Benito M. Cooperative role of telomerase activity and p16 expression in the prognosis of non-small-cell lung cancer. J Clin Oncol, 2002, 20(1): 254–262

    Article  PubMed  CAS  Google Scholar 

  48. Gautam A, Li Z R, Bepler G. RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene, 2003, 22(14): 2135–2142

    Article  PubMed  CAS  Google Scholar 

  49. Zheng Z, Chen T, Li X, Haura E, Sharma A, Bepler G. DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med, 2007, 356(8): 800–808

    Article  PubMed  CAS  Google Scholar 

  50. Ohta Y, Nozaki Z, Nozawa H, Kamesui T, Tsunezuka Y, Oda M, Watanabe G. The predictive value of vascular endothelial growth factor and nm23 for the diagnosis of occult metastasis in non-small cell lung cancer. Jpn J Cancer Res, 2001, 92(3): 361–366

    PubMed  CAS  Google Scholar 

  51. Tomita M, Ayabe T, Matsuzaki Y, Onitsuka T. Immunohistochemical analysis of nm23-H1 gene product in node-positive lung cancer and lymph nodes. Lung Cancer, 1999, 24(1): 11–16

    Article  PubMed  CAS  Google Scholar 

  52. Higashiyama M, Taki T, Ieki Y, Adachi M, Huang C L, Koh T, Kodama K, Doi O, Miyake M. Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in nonsmall cell lung cancer. Cancer Res, 1995, 55(24): 6040–6044

    PubMed  CAS  Google Scholar 

  53. Lau L F, Lam S C. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res, 1999, 248(1): 44–57

    Article  PubMed  CAS  Google Scholar 

  54. Chen N, Leu S J, Todorovic V, Lam S C, Lau L F. Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J Biol Chem, 2004, 279(42): 44166–44176

    Article  PubMed  CAS  Google Scholar 

  55. Xie D, Yin D, Wang H J, Liu G T, Elashoff R, Black K, Koeffler H P. Levels of expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals with gliomas. Clin Cancer Res, 2004, 10(6): 2072–2081

    Article  PubMed  CAS  Google Scholar 

  56. Chen C C, Chen N, Lau L F. The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem, 2001, 276(13): 10443–10452

    Article  PubMed  CAS  Google Scholar 

  57. Tong X, Xie D, O’Kelly J, Miller C W, Muller-Tidow C, Koeffler H P. Cyr61, a member of CCN family, is a tumor suppressor in nonsmall cell lung cancer. J Biol Chem, 2001, 276(50): 47709–47714

    Article  PubMed  CAS  Google Scholar 

  58. Chang C C, Shih J Y, Jeng Y M, Su J L, Lin B Z, Chen S T, Chau Y P, Yang P C, Kuo M L. Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst, 2004, 96(5): 364–375

    Article  PubMed  CAS  Google Scholar 

  59. Shih J Y, Yang S C, Hong T M, Yuan A, Chen J J, Yu C J, Chang Y L, Lee Y C, Peck K, Wu C W, Yang P C. Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer Inst, 2001, 93(18): 1392–1400

    Article  PubMed  CAS  Google Scholar 

  60. Pérez-Soler R, Chachoua A, Hammond L A, Rowinsky E K, Huberman M, Karp D, Rigas J, Clark G M, Santabárbara P, Bonomi P. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol, 2004, 22(16), 3238–3247

    Article  PubMed  CAS  Google Scholar 

  61. Jackman DM, Yeap B Y, Lindeman N I, Fidias P, Rabin MS, Temel J, Skarin A T, Meyerson M, Holmes A J, Borras A M, Freidlin B, Ostler P A, Lucca J, Lynch T J, Johnson B E, Jänne P A. Phase II clinical trial of chemotherapy-naive patients > or = 70 years of age treated with erlotinib for advanced non-small-cell lung cancer. J Clin Oncol, 2007, 25(7): 760–766

    Article  PubMed  CAS  Google Scholar 

  62. Shepherd F A, Rodrigues Pereira J, Ciuleanu T, Tan E H, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabárbara P, Seymour L; National Cancer Institute of Canada Clinical Trials Group. Erlotinib in previously treated nonsmall-cell lung cancer. N Engl J Med, 2005, 353(2): 123–132

    Article  PubMed  CAS  Google Scholar 

  63. Herbst R S, Prager D, Hermann R, Fehrenbacher L, Johnson B E, Sandler A, Kris MG, Tran H T, Klein P, Li X, Ramies D, Johnson D H, Miller VA; TRIBUTE Investigator Group. TRIBUTE: A phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-smallcell lung cancer. J Clin Oncol, 2005, 23(25): 5892–5899

    Article  PubMed  CAS  Google Scholar 

  64. Gatzemeier U, Pluzanska A, Szczesna A et al. Results of a phase III trial of erlotinib (OSI-774) combined with cisplatin and GC chemotherapy in advanced non-small cell lung cancer (NSCLC). J Clin Oncol, 2004, 22(suppl 14): 619s

    Google Scholar 

  65. Giaccone G, Herbst R S, Manegold C, Scagliotti G, Rosell R, Miller V, Natale R B, Schiller J H, Von Pawel J, Pluzanska A, Gatzemeier U, Grous J, Ochs J S, Averbuch S D, Wolf M K, Rennie P, Fandi A, Johnson D H. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial-INTACT 1. J Clin Oncol, 2004, 22(5): 777–784

    Article  PubMed  CAS  Google Scholar 

  66. Herbst R S, Giaccone G, Schiller J H, Natale R B, Miller V, Manegold C, Scagliotti G, Rosell R, Oliff I, Reeves J A, Wolf M K, Krebs A D, Averbuch S D, Ochs J S, Grous J, Fandi A, Johnson D H. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: A phase III trial-INTACT 2. J Clin Oncol, 2004, 22(5): 785–794

    Article  PubMed  CAS  Google Scholar 

  67. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard J Y, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, Horai T, Noda K, Takata I, Smit E, Averbuch S, Macleod A, Feyereislova A, Dong R P, Baselga J. Multi-institutional randomized Phase II trial of gefitinib for previously treated patients with advanced nonsmall-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol, 2003, 21(12): 2237–2246

    Article  PubMed  CAS  Google Scholar 

  68. Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, Thongprasert S, Tan E H, Pemberton K, Archer V, Carroll K. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomized, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet, 2005, 366(6496): 1527–1537

    Article  PubMed  CAS  Google Scholar 

  69. Hanna N, Lilenbaum R, Ansari R, Lynch T, Govindan R, Jänne PA, Bonomi P. Phase II trial of cetuximab in patients with previously treated non-small-cell lung cancer. J Clin Oncol, 2006, 24(33): 5253–5258

    Article  PubMed  CAS  Google Scholar 

  70. Pirker R, Szczesna A, von Pawel J, Krzakowski M, Ramlau R, Park K, Gatzemeier U, Bajeta E, Emig M, Pereira J R. A randomized, multicenter, phase III study of cetuximab in combination with cisplatin/vinorelbine (CV) versus CValone in the first-line treatment of patients with advanced non-small cell lung cancer (NSCLC). J Clin Oncol (Suppl), 2008, 26(15S): 3

    Article  Google Scholar 

  71. Socinski MA. Antibodies to the epidermal growth factor receptor in non-small cell lung cancer: current status of matuzumab and panitumumab. Clinical Cancer Research, 2007, (13): 4597s–4601s

    Article  CAS  Google Scholar 

  72. Sandler A, Gray R, Perry M C, Brahmer J, Schiller J H, Dowlati A, Lilenbaum R, Johnson D H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med, 2006, 355(24): 2542–2550

    Article  PubMed  CAS  Google Scholar 

  73. Johnson D H, Fehrenbacher L, Novotny W F, Herbst R S, Nemunaitis J J, Jablons D M, Langer C J, DeVore R F 3rd, Gaudreault J, Damico L A, Holmgren E, Kabbinavar F. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol, 2004, 22(11): 2184–2191

    Article  PubMed  CAS  Google Scholar 

  74. Socinski M A, Novello S, Sanchez J M. Efficacy and safety of sunitinib in previously treated, advanced non-small cell lung cancer (NSCLC): Preliminary results of a multicenter phase II trial. J Clin Oncol, 2006, 24(18S): 7001

    Google Scholar 

  75. Tateishi M, Ishida T, Mitsudomi T, Kaneko S, Sugimachi K. Prognostic value of c-erbB-2 protein expression in human lung adenocarcinoma and squamous cell carcinoma. Eur J Cancer, 1991, 27(11): 1372–1375

    Article  PubMed  CAS  Google Scholar 

  76. Shi D, He G, Cao S, Pan W, Zhang H Z, Yu D, Hung M C. Overexpression of the c-erbB-2/neu-encoded p185 protein in primary lung cancer. Mol Carcinog, 1992, 5(3): 213–218

    Article  PubMed  CAS  Google Scholar 

  77. Harpole D H Jr, Herndon J E 2nd, Wolfe W G, Iglehart J D, Marks J R. A prognostic model of recurrence and death in stage I non-small cell lung cancer utilizing presentation, histopathology, and oncoprotein expression. Cancer Res, 1995, 55(1): 51–56

    PubMed  CAS  Google Scholar 

  78. Hsieh C C, Chow K C, Fahn H J, Tsai C M, Li W Y, Huang M H, Wang L S. Prognostic significance of HER-2/neu overexpression in stage I adenocarcinoma of lung. Ann Thorac Surg, 1998, 66(4): 1159–1163

    Article  PubMed  CAS  Google Scholar 

  79. Cantero R, Torres A J, Maestro M L, Hernando F, Sanz M T, Del Barco V, Gomez A, Fernandez C, Balibrea J L. Prognostic value of the quantified expression of p185 in non-small cell lung cancer. J Thorac Cardiovasc Surg, 2000, 119(6): 1119–1125

    Article  PubMed  CAS  Google Scholar 

  80. Ardizzoni A, Cafferata MA, Paganuzzi M, Filiberti R, Marroni P, Neri M, Fontana V, Nicolo G, Perdelli L, Stampino C G, Rosso R, Puntoni R. Study of pretreatment serum levels of HER-2/neu oncoprotein as a prognostic and predictive factor in patients with advanced nonsmall cell lung carcinoma. Cancer, 2001, 92(7): 1896–1904

    Article  PubMed  CAS  Google Scholar 

  81. Kase S, Sugio K, Yamazaki K, Okamoto T, Yano T, Sugimachi K. Expression of E-cadherin and beta-catenin in human non-small cell lung cancer and the clinical significance. Clin Cancer Res, 2000, 6 (12): 4789–4796

    PubMed  CAS  Google Scholar 

  82. Hommura F, Furuuchi K, Yamazaki K, Ogura S, Kinoshita I, Shimizu M, Moriuchi T, Katoh H, Nishimura M, Dosaka-Akita H. Increased expression of beta-catenin predicts better prognosis in nonsmall cell lung carcinomas. Cancer, 2002, 94(3): 752–758

    Article  PubMed  CAS  Google Scholar 

  83. Bremnes R M, Veve R, Gabrielson E, Hirsch F R, Baron A, Bemis L, Gemmill R M, Drabkin H A, Franklin W A. High-throughput tissue microarray analysis used to evaluate biology and prognostic significance of the E-cadherin pathway in non-small-cell lung cancer. J Clin Oncol, 2002, 20(10): 2417–2428

    Article  PubMed  CAS  Google Scholar 

  84. Burbee D G, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, Sekido Y, Latif F, Milchgrub S, Toyooka S, Gazdar A F, Lerman M I, Zabarovsky E, White M, Minna J D. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst, 2001, 93(9): 691–699

    Article  PubMed  CAS  Google Scholar 

  85. Dammann R, Li C, Yoon J H, Chin P L, Bates S, Pfeifer G P. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet, 2000, 25 (3): 315–319

    Article  PubMed  CAS  Google Scholar 

  86. Maruyama R, Sugio K, Yoshino I, Maehara Y, Gazdar A F. Hypermethylation of FHIT as a prognostic marker in nonsmall cell lung carcinoma. Cancer, 2004, 100(7): 1472–1477

    Article  PubMed  CAS  Google Scholar 

  87. Huncharek M, Muscat J, Geschwind J F. K-ras oncogene mutation as a prognostic marker in non-small cell lung cancer: a combined analysis of 881 cases. Carcinogenesis, 1999, 20: 1507–1510

    Article  PubMed  CAS  Google Scholar 

  88. Higashiyama M, Kodama K, Yokouchi H, Takami K, Adachi M, Taki T, Ishiguro S, Nakamori S, Yoshie O, Miyake M. KAI1/CD82 expression in nonsmall cell lung carcinoma is a novel, favorable prognostic factor: an immunohistochemical analysis. Cancer, 1998, 83(3): 466–474

    Article  PubMed  CAS  Google Scholar 

  89. Takaoka A, Hinoda Y, Satoh S, Adachi Y, Itoh F, Adachi M, Imai K. Suppression of invasive properties of colon cancer cells by ametastasis suppressor KAI1 gene. Oncogene, 1998, 16(11): 1443–1453

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, B., Zhang, J., Woods, J.S. et al. Molecular markers and pathogenically targeted therapy in non-small cell lung cancer. Front. Med. China 3, 245–255 (2009). https://doi.org/10.1007/s11684-009-0044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-009-0044-3

Keywords

Navigation