Skip to main content
Log in

Are there any differential responses to concussive injury in civilian versus athletic populations: a neuroimaging study

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

A Correction to this article was published on 19 November 2018

This article has been updated

Abstract

Accurate identification and classification of patients suffering from mild traumatic brain injury (mTBI) is a significant challenge faced by clinicians and researchers. To examine if there are different pathophysiological responses to concussive injury in different populations, evaluated here comparing collegiate athletes versus age-matched non-athletes. Resting-state fMRI data were acquired in the acute phase of concussion from 30 collegiate athletes and from 30 injury and age matched non-athletes. Resting-state functional connectivity measures revealed group differences with reduced connectivity in the anterior cingulate cortex (p < .05) and posterior cingulate cortex (p < 0.05) hubs of the Default Mode Network in the athletes. Given the known positive effects of exercise on brain functional reserves and neural efficiency concept, we expected less pronounced effect of concussion in athletic population. In contrast, there were significant decreases in functional connectivity in athletes that could be a result of previous repetitive subconcussive impacts and history of concussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 19 November 2018

    The original version of this article contained mistakes in the article title, and the authors would like to correct them. The article title should be “Are there any differential responses to concussive injury in civilian versus athletic populations: a neuroimaging study”.

References

  • Ahlskog, J. E. (2011). Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology, 77(3), 288–294.

    PubMed  PubMed Central  Google Scholar 

  • Amorini, A. M., Lazzarino, G., Di Pietro, V., Signoretti, S., Lazzarino, G., Belli, A., & Tavazzi, B. (2017). Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids. Journal of Cellular and Molecular Medicine, 21(3), 530–542.

    PubMed  CAS  Google Scholar 

  • Anderson, T., Heitger, M., & Macleod, A. (2006). Concussion and mild head injury. Practical Neurology, 6(6), 342–357.

    Google Scholar 

  • Baugh, C. M., Stamm, J. M., Riley, D. O., Gavett, B. E., Shenton, M. E., Lin, A., Nowinski, C. J., Cantu, R. C., McKee, A. C., & Stern, R. A. (2012). Chronic traumatic encephalopathy: Neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging and Behavior, 6(2), 244–254. https://doi.org/10.1007/s11682-012-9164-5.

    Article  PubMed  Google Scholar 

  • Bergman, K., & Bay, E. (2010). Mild traumatic brain injury/concussion: A review for ED nurses. Journal of Emergency Nursing, 36(3), 221–230. https://doi.org/10.1016/j.jen.2009.07.001.

    Article  PubMed  Google Scholar 

  • Bosnell, R., Wegner, C., Kincses, Z. T., Korteweg, T., Agosta, F., Ciccarelli, O., et al. (2008). Reproducibility of fMRI in the clinical setting: Implications for trial designs. Neuroimage, 42(2), 603–610.

    PubMed  CAS  Google Scholar 

  • Brier, M. R., Thomas, J. B., & Ances, B. M. (2014). Network dysfunction in Alzheimer's disease: Refining the disconnection hypothesis. Brain Connectivity, 4(5), 299–311.

    PubMed  PubMed Central  Google Scholar 

  • Büchel, C., & Friston, K. (1997). Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex, 7(8), 768–778.

    PubMed  Google Scholar 

  • Cantu, R. (2006). Concussion Classification: Ongoing Controversy. In S. Slobounov & W. Sebastianelli (Eds.), Foundations of Sport-Related Brain Injuries (pp. 87–110). US: Springer.

    Google Scholar 

  • Cantu, R. C. (2007). Athletic concussion current understanding as of 2007. Neurosurgery, 60(6), 963–964. https://doi.org/10.1227/01.neu.0000255430.62291.7b.

    Article  PubMed  Google Scholar 

  • Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., VanPatter, M., . . . Kramer, A. F. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research, 1358, 172–183. doi:https://doi.org/10.1016/j.brainres.2010.08.049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costafreda, S. G. (2009). Pooling fMRI data: Meta-analysis, mega-analysis and multi-center studies. Frontiers in Neuroinformatics, 3, 33.

    PubMed  PubMed Central  Google Scholar 

  • Coynel, D., Marrelec, G., Perlbarg, V., Pélégrini-Issac, M., Van de Moortele, P.-F., Ugurbil, K., . . . Lehéricy, S. (2010). Dynamics of motor-related functional integration during motor sequence learning. Neuroimage, 49(1), 759–766.

    PubMed  Google Scholar 

  • Di Pietro, V., Lazzarino, G., Amorini, A. M., Signoretti, S., Hill, L. J., Porto, E., et al. (2017). Fusion or fission: The Destiny of mitochondria in traumatic brain injury of different severities. Scientific Reports, 7(1), 9189.

    PubMed  PubMed Central  Google Scholar 

  • Doppenberg, E. M., Choi, S. C., & Bullock, R. (2004). Clinical trials in traumatic brain injury: Lessons for the future. Journal of Neurosurgical Anesthesiology, 16(1), 87–94.

    PubMed  Google Scholar 

  • Fischer, B. L., Parsons, M., Durgerian, S., Reece, C., Mourany, L., Lowe, M. J., et al. (2014). Neural activation during response inhibition differentiates blast from mechanical causes of mild to moderate traumatic brain injury. Journal of Neurotrauma, 31(2), 169–179.

    PubMed  PubMed Central  Google Scholar 

  • Fletcher, P., Büchel, C., Josephs, O., Friston, K., & Dolan, R. (1999). Learning-related neuronal responses in prefrontal cortex studied with functional neuroimaging. Cerebral Cortex, 9(2), 168–178.

    PubMed  CAS  Google Scholar 

  • Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magnetic Resonance in Medicine, 33(5), 636–647.

    PubMed  CAS  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.

    PubMed  CAS  Google Scholar 

  • Franco, A. R., Pritchard, A., Calhoun, V. D., & Mayer, A. R. (2009). Interrater and intermethod reliability of default mode network selection. Human Brain Mapping, 30(7), 2293–2303.

    PubMed  PubMed Central  Google Scholar 

  • Gountouna, V.-E., Job, D. E., McIntosh, A. M., Moorhead, T. W. J., Lymer, G. K. L., Whalley, H. C., et al. (2010). Functional magnetic resonance imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. Neuroimage, 49(1), 552–560.

    PubMed  Google Scholar 

  • Gradin, V., Gountouna, V.-E., Waiter, G., Ahearn, T. S., Brennan, D., Condon, B., et al. (2010). Between-and within-scanner variability in the CaliBrain study n-back cognitive task. Psychiatry Research: Neuroimaging, 184(2), 86–95.

    PubMed  Google Scholar 

  • Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W., et al. (2003). Cumulative effects associated with recurrent concussion in collegiate football players: The NCAA concussion study. Jama, 290(19), 2549–2555.

    PubMed  CAS  Google Scholar 

  • Johnson, B., Gay, M., Zhang, K., Neuberger, T., Horovitz, S. G., Hallett, M., et al. (2012a). The use of magnetic resonance spectroscopy in the subacute evaluation of athletes recovering from single and multiple mild traumatic brain injury. Journal of Neurotrauma, 29(13), 2297–2304. https://doi.org/10.1089/neu.2011.2294.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., & Slobounov, S. (2012b). Alteration of brain default network in subacute phase of injury in concussed individuals: Resting-state fMRI study. Neuroimage, 59(1), 511–518. https://doi.org/10.1016/j.neuroimage.2011.07.081.

    Article  PubMed  Google Scholar 

  • Johnson, B. D., Neuberger, T., Gay, M., Hallett, M., & Slobounov, S. (2014). Effects of subconcussive head trauma on the default mode network of the brain. Journal of Neurotrauma, 31, 1907–1913. https://doi.org/10.1089/neu.2014.3415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiraly, M. A., & Kiraly, S. J. (2007). Traumatic brain injury and delayed sequelae: A review-traumatic brain injury and mild traumatic brain injury (concussion) are precursors to later-onset brain disorders, including early-onset dementia. The Scientific World Journal, 7, 1768–1776.

    PubMed  PubMed Central  Google Scholar 

  • Krajcovicova, L., Mikl, M., Marecek, R., & Rektorova, I. (2012). The default mode network integrity in patients with Parkinson’s disease is levodopa equivalent dose-dependent. Journal of Neural Transmission, 119(4), 443–454.

    PubMed  CAS  Google Scholar 

  • Langlois, J. A., Rutland-Brown, W., & Thomas, K. E. (2005). The incidence of traumatic brain injury among children in the United States - differences by race. Journal of Head Trauma Rehabilitation, 20(3), 229–238.

    Google Scholar 

  • Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury - a brief overview. Journal of Head Trauma Rehabilitation, 21(5), 375–378.

    Google Scholar 

  • Ma, L., Narayana, S., Robin, D. A., Fox, P. T., & Xiong, J. (2011). Changes occur in resting state network of motor system during 4weeks of motor skill learning. Neuroimage, 58(1), 226–233.

    PubMed  Google Scholar 

  • Machulda, M. M., Jones, D. T., Vemuri, P., McDade, E., Avula, R., Przybelski, S., . . . Jack, C. R. (2011). Effect of APOE ε4 status on intrinsic network connectivity in cognitively normal elderly subjects. Archives of Neurology, 68(9), 1131–1136.

    PubMed  PubMed Central  Google Scholar 

  • Marshall, L. F. (2000). Head injury: Recent past, present, and future. Neurosurgery, 47(3), 546–561.

    PubMed  CAS  Google Scholar 

  • Mayer, A. R., Mannell, M. V., Ling, J., Elgie, R., Gasparovic, C., Phillips, J. P., et al. (2009). Auditory orienting and inhibition of return in mild traumatic brain injury: A FMRI study. Human Brain Mapping, 30(12), 4152–4166.

    PubMed  PubMed Central  Google Scholar 

  • Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835. https://doi.org/10.1002/hbm.21151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer, A. R., Bellgowan, P. S., & Hanlon, F. M. (2015). Functional magnetic resonance imaging of mild traumatic brain injury. Neuroscience & Biobehavioral Reviews, 49, 8–18.

  • Mayer, A. R., Quinn, D. K., & Master, C. L. (2017). The spectrum of mild traumatic brain injury a review. Neurology, 89(6), 623–632.

    PubMed  PubMed Central  Google Scholar 

  • McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvorak, J., Echemendia, R. J., & Turner, M. (2013). Consensus statement on concussion in sport: The 4th international conference on concussion in sport held in Zurich, November 2012. British Journal of Sports Medicine, 47(5), 250–258. https://doi.org/10.1136/bjsports-2013-092313.

    PubMed  Google Scholar 

  • McIntosh, A. R. (1999). Mapping cognition to the brain through neural interactions. Memory, 7(5–6), 523–548.

    PubMed  CAS  Google Scholar 

  • McKee, A. C., & Robinson, M. E. (2014). Military-related traumatic brain injury and neurodegeneration. Alzheimer's & Dementia, 10(3), S242–S253.

    Google Scholar 

  • McKee, A. C., Cantu, R. C., Nowinski, C. J., Hedley-Whyte, E. T., Gavett, B. E., Budson, A. E., et al. (2009). Chronic traumatic encephalopathy in athletes: Progressive Tauopathy after repetitive head injury. Journal of Neuropathology and Experimental Neurology, 68(7), 709–735.

    PubMed  Google Scholar 

  • McKee, A. C., Stern, R. A., Nowinski, C. J., Stein, T. D., Alvarez, V. E., Daneshvar, D. H., et al. (2013). The spectrum of disease in chronic traumatic encephalopathy. Brain, 136, 1. https://doi.org/10.1093/brain/awt051.

    Article  Google Scholar 

  • Mendez, M. F., Owens, E. M., Reza Berenji, G., Peppers, D. C., Liang, L.-J., & Licht, E. A. (2013). Mild traumatic brain injury from primary blast vs. blunt forces: Post-concussion consequences and functional neuroimaging. NeuroRehabilitation, 32(2), 397–407.

    PubMed  Google Scholar 

  • Narayan, R. K., Michel, M. E., Ansell, B., Baethmann, A., Biegon, A., Bracken, M. B., et al. (2002). Clinical trials in head injury. Journal of Neurotrauma, 19(5), 503–557.

    PubMed  Google Scholar 

  • Nencka, A. S., Meier, T. B., Wang, Y., Muftuler, L. T., Wu, Y. C., Saykin, A. J., & Guskiewicz, K. M. (2018). Stability of MRI metrics in the advanced research core of the NCAA-DoD concussion assessment, research and education (CARE) consortium. Brain Imaging and Behavior, 12(4), 1121–1140.

  • Ploughman, M. (2008). Exercise is brain food: The effects of physical activity on cognitive function. Developmental Neurorehabilitation, 11(3), 236–240. https://doi.org/10.1080/17518420801997007.

    Article  PubMed  Google Scholar 

  • Saatman, K. E., Duhaime, A.-C., Bullock, R., Maas, A. I., Valadka, A., & Manley, G. T. (2008). Classification of traumatic brain injury for targeted therapies. Journal of Neurotrauma, 25(7), 719–738.

    PubMed  PubMed Central  Google Scholar 

  • Sheline, Y. I., & Raichle, M. E. (2013). Resting state functional connectivity in preclinical Alzheimer's disease. Biological Psychiatry, 74(5), 340–347. https://doi.org/10.1016/j.biopsych.2012.11.028.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shultz, S. R., MacFabe, D. F., Foley, K. A., Taylor, R., & Cain, D. P. (2012). Sub-concussive brain injury in the long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments. Behavioural Brain Research, 229(1), 145–152. https://doi.org/10.1016/j.bbr.2011.12.015.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R., Meier, T. B., Kuplicki, R., Savitz, J., Mukai, I., Cavanagh, L., et al. (2014). Relationship of collegiate football experience and concussion with hippocampal volume and cognitive outcomes. Jama, 311(18), 1883–1888.

    PubMed  CAS  Google Scholar 

  • Sivanandam, T. M., & Thakur, M. K. (2012). Traumatic brain injury: A risk factor for Alzheimer's disease. Neuroscience and Biobehavioral Reviews, 36(5), 1376–1381. https://doi.org/10.1016/j.neubiorev.2012.02.013.

    Article  PubMed  Google Scholar 

  • Slobounov, S. M., Zhang, K., Pennell, D., Ray, W., Johnson, B., & Sebastianelli, W. (2010). Functional abnormalities in normally appearing athletes following mild traumatic brain injury: A functional MRI study. Experimental Brain Research, 202(2), 341–354. https://doi.org/10.1007/s00221-009-2141-6.

    Article  PubMed  Google Scholar 

  • Slobounov, S. M., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., et al. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. Neuroimage, 55(4), 1716–1727. https://doi.org/10.1016/j.neuroimage.2011.01.024.

    Article  PubMed  CAS  Google Scholar 

  • Sripada, R. K., King, A. P., Welsh, R. C., Garfinkel, S. N., Wang, X., Sripada, C. S., & Liberzon, I. (2012). Neural dysregulation in posttraumatic stress disorder: Evidence for disrupted equilibrium between salience and default mode brain networks. Psychosomatic Medicine, 74(9), 904–911.

    PubMed  PubMed Central  Google Scholar 

  • Stern, R. A., Riley, D. O., Daneshvar, D. H., Nowinski, C. J., Cantu, R. C., & McKee, A. C. (2011). Long-term consequences of repetitive brain trauma: Chronic traumatic encephalopathy. Pm&R, 3(10), S460–S467. https://doi.org/10.1016/j.pmrj.2011.08.008.

    Article  Google Scholar 

  • Talavage, T. M., Nauman, E., Breedlove, E. L., Yoruk, U., Dye, A. E., Morigaki, K., et al. (2010). Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. Journal of Neurotrauma, 31, 327–338. https://doi.org/10.1089/neu.2010.1512.

    Article  Google Scholar 

  • Vagnozzi, R., Tavazzi, B., Signoretti, S., Amorini, A. M., Belli, A., Cimatti, M., et al. (2007). Temporal window of metabolic brain vulnerability to concussions: Mitochondrial-related impairment - part I. Neurosurgery, 61(2), 379–388. https://doi.org/10.1227/01.neu.0000280002.41696.d8.

    Article  PubMed  Google Scholar 

  • Vagnozzi, R., Signoretti, S., Cristofori, L., Alessandrini, F., Floris, R., Isgro, E., . . . Tavazzi, B. (2010). Assessment of metabolic brain damage and recovery following mild traumatic brain injury: A multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain, 133(11), 3232–3242.

    PubMed  Google Scholar 

  • Vagnozzi, R., Signoretti, S., Floris, R., Marziali, S., Manara, M., Amorini, A. M., et al. (2013). Decrease in N-acetylaspartate following concussion may be coupled to decrease in creatine. The Journal of Head Trauma Rehabilitation, 28(4), 284–292.

    PubMed  Google Scholar 

  • Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: The neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10(8), 585–596.

    PubMed  CAS  Google Scholar 

  • Yoo, K., Sohn, W. S., & Jeong, Y. (2013). Tool-use practice induces changes in intrinsic functional connectivity of parietal areas. Frontiers in Human Neuroscience, 7, 49.

  • Zhu, D. C., Covassin, T., Nogle, S., Doyle, S., Russell, D., Pearson, R. L., et al. (2015). A potential biomarker in sports-related concussion: Brain functional connectivity alteration of the default-mode network measured with longitudinal resting-state fMRI over thirty days. Journal of Neurotrauma, 32(5), 327–341.

    PubMed  Google Scholar 

  • Zohar, O., Lavy, R., Zi, X. M., Nelson, T. J., Hongpaisan, J., Pick, C. G., & Alkon, D. L. (2011). PKC activator therapeutic for mild traumatic brain injury in mice. Neurobiology of Disease, 41(2), 329–337. https://doi.org/10.1016/j.nbd.2010.10.001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon Slobounov.

Additional information

The original version of this article was revised: The article title should be “Are there any differential responses to concussive injury in civilian versus athletic populations: a neuroimaging study”.

Electronic supplementary material

ESM 1

(PDF 373 kb)

ESM 2

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, B., Dodd, A., Mayer, A.R. et al. Are there any differential responses to concussive injury in civilian versus athletic populations: a neuroimaging study. Brain Imaging and Behavior 14, 110–117 (2020). https://doi.org/10.1007/s11682-018-9982-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9982-1

Keywords

Navigation