Skip to main content

Advertisement

Log in

Does ventrolateral prefrontal cortex help in searching for the lost key? Evidence from an fNIRS study

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The Key Search Task (KST) is a neuropsychological test that requires strategies for searching a lost key in an imaginary field. This request may involve different cognitive processes as mental imagery and navigation planning. This study was aimed at investigating, by a twenty-channel functional near-infrared spectroscopy (fNIRS) system, the hemodynamic response (i.e., oxygenated-hemoglobin (O2Hb) and deoxygenated-hemoglobin (HHb) changes) of the prefrontal cortex in navigation planning. A right ventrolateral prefrontal cortex (rVLPFC) activation during the KST was hypothesized. Thirty-eight volunteers performed the KST and a Control Task (CT), the latter requiring the volunteers to mark the X letter. An activation (i.e., increase/decrease in O2Hb/HHb) of: 1) rVLPFC during the KST execution, and 2) bilateral dorsolateral prefrontal cortex (DLPFC) during the CT execution was found. The present study provides a contribution in localizing the rVLPFC as the critically active region, within the frontal lobes, that was found maximally activated during mental navigation in the mind’s eye of healthy participants while performing the KST. Considering the contribution of rVLPFC in spatial navigation, its activation suggests that the KST could be adopted in the clinical routine for investigating navigation planning. Compared to other neuroimaging techniques, fNIRS (with its relatively low physical constraints) contributes to better clarifying the role of rVLPFC in some aspects of human navigation. Therefore, the combined use of the fNIRS and the KST could be considered as an innovative and valid tool to evaluate fundamental functions for everyday life, such as spatial navigation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aasted, C. M., Yücel, M. A., Cooper, R. J., Dubb, J., Tsuzuki, D., Becerra, L., et al. (2015). Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial. Neurophotonics, 2(2), 020801.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arleo, A., & Rondi-Reig, L. (2007). Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms. Journal of Integrative Neuroscience, 6(3), 327–366.

    Article  PubMed  Google Scholar 

  • Barker, J. W., Aarabi, A., & Huppert, T. J. (2013). Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS. Biomedical Optics Express, 4(8), 1366–1379.

    Article  PubMed  PubMed Central  Google Scholar 

  • Basso Moro, S., Bisconti, S., Muthalib, M., Spezialetti, M., Cutini, S., Ferrari, M., et al. (2014). A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: A functional near-infrared spectroscopy study. NeuroImage, 85, 451–460.

    Article  PubMed  Google Scholar 

  • Bianchini, F., Incoccia, C., Palermo, L., Piccardi, L., Zompanti, L., Sabatini, U., et al. (2010). Developmental topographical disorientation in a healthy subject. Neuropsychologia, 48(6), 1563–1573.

    Article  PubMed  CAS  Google Scholar 

  • Bianchini, F., Palermo, L., Piccardi, L., Incoccia, C., Nemmi, F., Sabatini, U., et al. (2014). Where am I? A new case of developmental topographical disorientation. Journal of Neuropsychology, 8(1), 107–124.

    Article  PubMed  Google Scholar 

  • Bisiach, E., & Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex, 14(1), 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Boas, D. A., Elwell, C. E., Ferrari, M., & Taga, G. (2014). Twenty years of functional near-infrared spectroscopy: Introduction for the special issue. NeuroImage, 85, 1–5.

    Article  PubMed  Google Scholar 

  • Boccia, M., Piccardi, L., Palermo, L., Nemmi, F., Sulpizio, V., Galati, G., et al. (2015). A penny for your thoughts! Patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Human Brain Mapping, 36(3), 945–958.

    Article  PubMed  Google Scholar 

  • Boccia, M., Guariglia, C., Sabatini, U., & Nemmi, F. (2016a). Navigating toward a novel environment from a route or survey perspective: Neural correlates and context-dependent connectivity. Brain Structure & Function, 221(4), 2005–2021.

    Article  Google Scholar 

  • Boccia, M., Sulpizio, V., Palermo, L., Piccardi, L., Guariglia, C., & Galati, G. (2016b). I can see where you would be: Patterns of fMRI activity reveal imagined landmarks. NeuroImage. doi:10.1016/j.neuroimage.2016.08.034.

  • Boccia, M., Sulpizio, V., Nemmi, F., Guariglia, C., & Galati, G. (2016c). Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: Evidence from resting-state functional connectivity. Brain Structure & Function. doi:10.1007/s00429-016-1318-6.

  • Boccia, M., Silveri, M. C., Sabatini, U., Guariglia, C., & Nemmi, F. (2016d). Neural underpinnings of the decline of topographical memory in mild cognitive impairment. American Journal of Alzheimer's Disease and Other Dementias, 31(8), 618–630.

    Article  PubMed  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.

    Article  PubMed  Google Scholar 

  • Ciaramelli, E. (2008). The role of ventromedial prefrontal cortex in navigation: A case of impaired wayfinding and rehabilitation. Neuropsychologia, 46(7), 2099–2105.

    Article  PubMed  Google Scholar 

  • Clark, B. J., & Taube, J. S. (2012). Vestibular and attractor network basis of the head direction cell signal in subcortical circuits. Frontiers in Neural Circuits, 6, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahmani, L., & Bohbot, V. D. (2015). Dissociable contributions of the prefrontal cortex to hippocampus-and caudate nucleus-dependent virtual navigation strategies. Neurobiology of Learning and Memory, 117, 42–50.

    Article  PubMed  Google Scholar 

  • Ekstrom, A. D., Arnold, A. E., & Iaria, G. (2014). A critical review of the allocentric spatial representation and its neural underpinnings: Toward a network-based perspective. Frontiers in Human Neuroscience, 8, 803.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921–935.

    Article  PubMed  Google Scholar 

  • Fuster, J. M. (2008). The prefrontal cortex. New York: Academic Press.

    Book  Google Scholar 

  • Gagnon, L., Perdue, K., Greve, D. N., Goldenholz, D., Kaskhedikar, G., & Boas, D. A. (2011). Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling. NeuroImage, 56(3), 1362–1371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowen, E., & Miall, R. C. (2007). The cerebellum and motor dysfunction in neuropsychiatric disorders. Cerebellum, 6(3), 268–279.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guariglia, C., Palermo, L., Piccardi, L., Iaria, G., & Incoccia, C. (2013). Neglecting the left side of a city square but not the left side of its clock: Prevalence and characteristics of representational neglect. PloS One, 8(7), e67390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task Load index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (pp. 139–183). North Holland: Elsevier.

    Chapter  Google Scholar 

  • Howard, L. R., Javadi, A. H., Yu, Y., Mill, R. D., Morrison, L. C., Knight, R., et al. (2014). The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Current Biology, 24(12), 1331–1340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunter, E. M., Phillips, L. H., & Mac Pherson, S. E. (2016). Where is my key? Where is his key? Perspective taking and social sensitivity of the key search task. Cortex, 76, 131–133.

    Article  PubMed  Google Scholar 

  • Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48(10), D280–D298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iaria, G., Chen, J. K., Guariglia, C., Ptito, A., & Petrides, M. (2007). Retrosplenial and hippocampal brain regions in human navigation: Complementary functional contributions to the formation and use of cognitive maps. The European Journal of Neuroscience, 25(3), 890–899.

    Article  PubMed  Google Scholar 

  • Iaria, G., Bogod, N., Fox, C. J., & Barton, J. J. (2009). Developmental topographical disorientation: Case one. Neuropsychologia, 47(1), 30–40.

    Article  PubMed  Google Scholar 

  • Kirasic, K. C. (1991). Spatial cognition and behavior in young and elderly adults: Implications for learning new environments. Psychology and Aging, 6(1), 10–18.

    Article  PubMed  CAS  Google Scholar 

  • Koric, L., Volle, E., Seassau, M., Bernard, F. A., Mancini, J., Dubois, B., et al. (2012). How cognitive performance-induced stress can influence right VLPFC activation: An fMRI study in healthy subjects and in patients with social phobia. Human Brain Mapping, 33(8), 1973–1986.

    Article  PubMed  Google Scholar 

  • Lind, S. E., Williams, D. M., Raber, J., Peel, A., & Bowler, D. M. (2013). Spatial navigation impairments among intellectually high-functioning adults with autism spectrum disorder: Exploring relations with theory of mind, episodic memory, and episodic future thinking. Journal of Abnormal Psychology, 122(4), 1189–1199.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinet, L. E., Sheynikhovich, D., Benchenane, K., & Arleo, A. (2011). Spatial learning and action planning in a prefrontal cortical network model. PLoS Computational Biology, 7(5), e1002045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  PubMed  CAS  Google Scholar 

  • Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17(6), 1274–1282.

    Article  PubMed  Google Scholar 

  • Molavi, B., & Dumont, G. A. (2012). Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiological Measurement, 33(2), 259–270.

    Article  PubMed  Google Scholar 

  • Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain's spatial representation system. Annuals Review of Neuroscience, 31, 69–89.

    Article  CAS  Google Scholar 

  • Motta, K., Lee, H., & Falkmer, T. (2014). Post-stroke driving: Examining the effect of executive dysfunction. Journal of Safety Research, 49, 33–38.

    Article  PubMed  Google Scholar 

  • Nemmi, F., Bianchini, F., Piras, F., Péran, P., Palermo, L., Piccardi, L., et al. (2015). Finding my own way: An fMRI single case study of a subject with developmental topographical disorientation. Neurocase, 21(5), 573–583.

    Article  PubMed  Google Scholar 

  • O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Oosterman, J. M., Molenveld, M., Olde Rikkert, M. G., & Kessels, R. P. (2010). Diagnostic utility of the key search test as a measure of executive functions. Psychogeriatrics, 10(4), 173–178.

    Article  PubMed  Google Scholar 

  • Palermo, L., Iaria, G., & Guariglia, C. (2008). Mental imagery skills and topographical orientation in humans: A correlation study. Behavioural Brain Research, 192(2), 248–253.

    Article  PubMed  Google Scholar 

  • Palermo, L., Foti, F., Ferlazzo, F., Guariglia, C., & Petrosini, L. (2014a). I find my way in a maze but not in my own territory! Navigational processing in developmental topographical disorientation. Neuropsychology, 28(1), 135–146.

    Article  PubMed  Google Scholar 

  • Palermo, L., Piccardi, L., Bianchini, F., Nemmi, F., Giorgio, V., Incoccia, C., et al. (2014b). Looking for the compass in a case of developmental topographical disorientation: A behavioral and neuroimaging study. Journal of Clinical and Experimental Neuropsychology, 36(5), 464–481.

    Article  PubMed  Google Scholar 

  • Piccardi, L., Bianchini, F., Zompanti, L., & Guariglia, C. (2008). Pure representational neglect and navigational deficits in a case with preserved visuo-spatial working memory. Neurocase, 14(4), 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Piccardi, L., Nori, R., Palermo, L., Guariglia, C., & Giusberti, F. (2015). Age effect in generating mental images of buildings but not common objects. Neuroscience Letters, 602, 79–83.

    Article  PubMed  CAS  Google Scholar 

  • Raven, J. C. (1986). Coloured progressive matrices (CPM). Serie a, ab, b. Firenze: Organizzazioni Speciali.

    Google Scholar 

  • Salmaso, D., & Longoni, A. M. (1983). Hand preference in an Italian sample. Perceptual and Motor Skills, 57(3), 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  • Scholkmann, F., Kleiser, S., Metz, A., Zimmermann, R., Pavia, J. M., Wolf, U., et al. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage, 85, 6–27.

    Article  PubMed  Google Scholar 

  • Schroeter, M. L., Vogt, B., Frisch, S., Becker, G., Barthel, H., Mueller, K., et al. (2012). Executive deficits are related to the inferior frontal junction in early dementia. Brain, 135, 201–215.

    Article  PubMed  Google Scholar 

  • Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the state-trait anxiety inventory. Palo Alto: Consulting Psychologists Press.

    Google Scholar 

  • Spiers, H. J. (2008). Keeping the goal in mind: Prefrontal contributions to spatial navigation. Neuropsychologia, 46(7), 2106–2108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiers, H. J., & Maguire, E. A. (2007). A navigational guidance system in the human brain. Hippocampus, 17(8), 618–626.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spooner, D. M., & Pachana, N. A. (2006). Ecological validity in neuropsychological assessment: A case for greater consideration in research with neurologically intact populations. Archives of Clinical Neuropsychology, 21(4), 327–337.

    Article  PubMed  Google Scholar 

  • Stawarczyk, D., & D'Argembeau, A. (2015). Neural correlates of personal goal processing during episodic future thinking and mind-wandering: An ALE meta-analysis. Human Brain Mapping, 36(8), 2928–2947.

    Article  PubMed  Google Scholar 

  • Takahashi, T., Takikawa, Y., Kawagoe, R., Shibuya, S., Iwano, T., & Kitazawa, S. (2011). Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task. NeuroImage, 57(3), 991–1002.

    Article  PubMed  Google Scholar 

  • Viard, A., Doeller, C. F., Hartley, T., Bird, C. M., & Burgess, N. (2011). Anterior hippocampus and goal-directed spatial decision making. The Journal of Neuroscience, 31(12), 4613–4621.

    Article  PubMed  CAS  Google Scholar 

  • Vlček, K., & Laczó, J. (2014). Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer’s disease. Frontiers in Behavioral Neuroscience, 8, 1–6.

    Google Scholar 

  • Vogeley, K., May, M., Ritzl, A., Falkai, P., Zilles, K., & Fink, G. R. (2004). Neural correlates of first-person perspective as one constituent of human self-consciousness. Journal of Cognitive Neuroscience, 16(5), 817–827.

    Article  PubMed  CAS  Google Scholar 

  • Wilber, A. A., Clark, B. J., Forster, T. C., Tatsuno, M., & McNaughton, B. L. (2014). Interaction of egocentric and world-centered reference frames in the rat posterior parietal cortex. The Journal of Neuroscience, 34(16), 5431–5446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkniss, S. M., Jones, M. G., Korol, D. L., Gold, P. E., & Manning, C. A. (1997). Age-related differences in an ecologically based study of route learning. Psychology and Aging, 12(2), 372–375.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, B. A., Alderman, N., Burgess, P. W., Emslie, H. C., & Evans, J. J. (1996). The behavioural assessment of the dysexecutive syndrome. Bury St Edmunds: Thames Valley Test Company.

    Google Scholar 

  • Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138–146.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been performed in the framework of the “Interdepartmental Research Centre for Molecular Diagnostics and Advanced Therapies”. This work was supported in part by: 1) the 2014 grant from the “Fondazione Cassa di Risparmio della Provincia dell'Aquila”, and 2) the “Abruzzo earthquake relief fund” (Toronto, ON).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Quaresima.

Ethics declarations

Disclosure of potential conflict of interest

Marika Carrieri, Stefania Lancia, Alessia Bocchi, Marco Ferrari, Laura Piccardi, Valentina Quaresima declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrieri, M., Lancia, S., Bocchi, A. et al. Does ventrolateral prefrontal cortex help in searching for the lost key? Evidence from an fNIRS study. Brain Imaging and Behavior 12, 785–797 (2018). https://doi.org/10.1007/s11682-017-9734-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9734-7

Keywords

Navigation