Skip to main content
Log in

Brain Activations During Correct and False Recognitions of Visual Stimuli: Implications for Eyewitness Decisions on an fMRI Study Using a Film Paradigm

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Human behavior strongly relies on the visual storage of events. Unfortunately, the sense of sight is susceptible to numerous distortions and misidentifications. Our study investigated the possibility of applying neuroimaging methods for verification of eyewitness reports. We developed a film paradigm and investigated three related picture sets in a recognition task using functional magnetic resonance imaging (fMRI). For each picture subjects were instructed to make a known–unknown decision. Behavioral results showed false recognitions for nearly half of the presented stimuli. The fMRI results revealed distinct activations for correct and false recognitions. The orbitofrontal cortex could be distinguished as a key region for processing imagined and distorted information resulting in correct rejection of unknown material. Otherwise, false recognitions of unknown material highlighted surprising activation within the posterior cingulate gyrus indicating the subjects’ strain to match unknown information to that known. The results are discussed in terms of current false memory research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bernstein, D. M., Laney, C., Morris, E. K., & Loftus, E. F. (2005). False beliefs about fattening foods can have healthy consequences. Proceedings of the National Academy of Sciences of the United States of America, 102, 13724–13731.

    Article  PubMed  CAS  Google Scholar 

  • Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546.

    Article  PubMed  Google Scholar 

  • Brett, C. (1999). The MNI brain and the Talairach atlas. http://www.mrc-cbu.cam.ac.uk/imaging/mnispace.html. Accessed 26 Sept 2003.

  • Buckner, R. L., Wheeler, M. E., & Sheridan, M. A. (2001). Encoding processes during retrieval tasks. Journal of Cognitive Neuroscience, 13, 460–415.

    Article  Google Scholar 

  • Cabeza, R., Rao, S. M., Wagner, A. D., Mayer, A. R., & Schacter, D. L. (2001). Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proceedings of the National Academy of Sciences of the United States of America, 98, 4805–4810.

    Article  PubMed  CAS  Google Scholar 

  • Conway, M. A., Pleydell-Pearce, C. W., Whitecross, S. E., & Sharpe, H. (2003). Neurophysiological correlates of memory for experienced and imagined events. Neuropsychologia, 41, 334–340.

    Article  PubMed  Google Scholar 

  • Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology, 58, 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, M. D., & MacLeod, C. M. (2004). False recognition without intentional learning. Psychonomic Bulletin & Review, 11, 137–142.

    Google Scholar 

  • Festinger, L. (1957). A theory of cognitive dissonance. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Fletcher, P. C., Frith, C. D., Baker, S. C., Shallice, T., Frackowiak, R. S. J., & Dolan, R. J. (1995). The mind’s eye—Precuneus activation in memory-related imagery. Neuroimage, 2, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, P. C., & Henson, R. N. A. (2001). Frontal lobes and human memory: Insights from functional neuroimaging. Brain, 124, 849–881.

    Article  PubMed  CAS  Google Scholar 

  • Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual imagery and visual perception: An fMRI study. Cognitive Brain Research, 20, 226–241.

    Article  PubMed  Google Scholar 

  • Garoff, R. J., Slotnick, S. D., & Schacter, D. L. (2005). The neural origins of specific and general memory: The role of the fusiform cortex. Neuropsychologia, 43, 847–859.

    Article  PubMed  Google Scholar 

  • Garoff-Eaton, R. J., Slotnick, S. D., & Schacter, D. L. (2006). Not all false memories are created equal: The neural basis of false recognition. Cerebral Cortex, 16, 1645–1652.

    Article  PubMed  Google Scholar 

  • Goff, L., & Roediger Jr., H. L. (1998). Imagination inflation for action events: Repeated imaginings lead to illusory recollections. Memory and Cognition, 26, 20–33.

    CAS  Google Scholar 

  • Gonsalves, B., & Paller, K. A. (2000). Neural events that underlie remembering something that never happened. Nature Neuroscience, 3, 1316–1321.

    Article  PubMed  CAS  Google Scholar 

  • Gonsalves, B., & Paller, K. A. (2002). Mistaken memories: Remembering events that never happened. The Neuroscientist, 8, 391–395.

    PubMed  Google Scholar 

  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.

    Google Scholar 

  • Ihlebæk, C., Løve, T., Eilertsen, D. E., & Magnussen, S. (2003). Memory for a staged criminal event witnessed live on video. Memory, 11, 319–327.

    Article  PubMed  Google Scholar 

  • Johnson, M. K., & Raye, C. L. (1998). False memories and confabulation. Trends in Cognitive Sciences, 2, 137–145.

    Article  Google Scholar 

  • Kensinger, E. A., & Schacter, D. L. (2005). Emotional content and reality-monitoring ability: fMRI evidence for the influences of encoding processes. Neuropsychologia, 43, 1429–1443.

    Article  PubMed  Google Scholar 

  • Kensinger, E. A., & Schacter, D. L. (2007). Remembering the specific visual details of presented objects: Neuroimaging evidence for effects of emotion. Neuropsychologia, 45, 2951–2962.

    Article  PubMed  Google Scholar 

  • Kim, H., & Cabeza, R. (2007). Trusting our memories: Dissociating the neural correlates of confidence in veridical versus illusory memories. Journal of Neuroscience, 27, 12190–12197.

    Article  PubMed  CAS  Google Scholar 

  • Kopelman, M. D. (2002). Disorders of memory. Brain, 125, 2152–2190.

    Article  PubMed  Google Scholar 

  • Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach Atlas labels for functional brain mapping. Human Brain Mapping,, 10, 120-131.

    Article  PubMed  CAS  Google Scholar 

  • Levin, D. T., & Simons, D. J. (1997). Failure to detect changes to attended objects in motion pictures. Psychonomic Bulletin & Review, 4, 501–506.

    Google Scholar 

  • Lindsay, D. S., Allen, B. P., Chan, J. C. K., & Dahl, L. C. (2004). Eyewitness suggestibility and source similarity: Intrusions of details from one event into memory reports of another event. Journal of Memory and Language, 50, 96–111.

    Article  Google Scholar 

  • Lindsay, D. S., & Johnson, M. K. (2000). False memories and the source memory framework—Reply to Reyna and Lloyd (1997). Learning and Individual Differences, 12, 145–161.

    Article  Google Scholar 

  • Loftus, E. (2002). Memory faults and fixes. Issues in Science and Technology, 18, 41–50.

    Google Scholar 

  • Loftus, E. (2003). Our changeable memories: Legal and practical implications. Nature Reviews Neuroscience, 4, 232–233.

    Article  CAS  Google Scholar 

  • Maddock, R. J., Garrett, A. S., & Buonocore, M. H. (2003). Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Human Brain Mapping, 18, 30–41.

    Article  PubMed  Google Scholar 

  • Magno, E., Foxe, J. J., Molholm, S., Robertson, I. H., & Garavan, H. (2006). The anterior cingulate and error avoidance. The Journal of Neuroscience, 26, 4769–4773.

    Article  PubMed  CAS  Google Scholar 

  • Markowitsch, H. J., Vandekerckhove, M. M. P., Lanfermann, H., & Russ, M. O. (2003). Engagement of lateral and medial prefrontal areas in the ecphory of sad and happy autobiographical memories. Cortex, 39, 643–665.

    Article  PubMed  Google Scholar 

  • Ogden, J. (1993). Visual object agnosia, prosopagnosia, chromatopsia, loss of visual imagery, and autobiographical amnesia following recovery from optical blindness: Case M.H. Neuropsychologia, 31, 571–589.

    Article  PubMed  CAS  Google Scholar 

  • Okado, Y., & Stark, C. E. L. (2003). Neural processing associated with true and false memory retrieval. Cognitive, Affective, & Behavioral Neuroscience, 3, 323–334.

    Article  Google Scholar 

  • Okado, Y., & Stark, C. E. L. (2005). Neural processing during encoding predicts false memories created by misinformation. Learning & Memory, 12, 3–11.

    Article  Google Scholar 

  • Piefke, M., Weiss, P. H., Zilles, K., Markowitsch, H. J., & Fink, G. R. (2003). Differential remoteness and emotional tone modulate the neural correlates of autobiographical memory. Brain, 126, 650–668.

    Article  PubMed  Google Scholar 

  • Rahm, B., Opwis, K., Kaller, C. P., Spreer, J., Schwarzwald, R., Seifritz, E., et al. (2006). Tracking the subprocesses of decision-based action in the human frontal lobes. Neuroimage, 30, 656–667.

    Article  PubMed  CAS  Google Scholar 

  • Roediger III, H. L., & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 803–814.

    Article  Google Scholar 

  • Rolls, E. T., Browning, A. S., Inoue, K., & Hernadi, I. (2005). Novel visual stimuli activate a population of neurons in the primate orbitofrontal cortex. Neurobiology of Learning and Memory, 84, 111–123.

    Article  PubMed  Google Scholar 

  • Schacter, D. L. (2001). The seven sins of memory: How the mind forgets and remembers. New York: Houghton Mifflin Company.

    Google Scholar 

  • Schacter, D. L., & Curran, T. (2000). Memory without remembering and remembering without memory: Implicit and false memory. In M. S. Gazzaniga (Ed.), The New Cognitive Neuroscience (pp. 829–840, 2nd ed.). Cambridge, MA: MIT.

    Google Scholar 

  • Schacter, D. L., Norman, K. A., & Koutstaal, W. (1998). The cognitive neuroscience of constructive memory. Annual Review of Psychology, 49, 289–318.

    Article  PubMed  CAS  Google Scholar 

  • Schacter, D. L., Reiman, E., Curran, T., Yun, L. S., Bandy, D., McDermott, K. B., et al. (1996). Neuroanatomical correlates of veridical and illusory recognition memory: Evidence from positron emission tomography. Neuron, 17, 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Shimamura, A. P. (1995). Memory and frontal lobe function. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 803–813). Cambridge, MA: MIT.

    Google Scholar 

  • Silvia, M. M., Groeger, J. A., & Bradshaw, M. F. (2006). Attention–memory interactions in scene perception. Spatial Vision, 19, 9–19.

    Article  Google Scholar 

  • Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28, 1059–1074.

    Article  PubMed  CAS  Google Scholar 

  • Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D., & Schacter, D. L. (2003). Neural mechanisms of visual object priming: Evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage, 19, 613–626.

    Article  PubMed  Google Scholar 

  • Slotnick, S. D., & Schacter, D. L. (2004). A sensory signature that distinguishes true from false memories. Nature Neuroscience, 7, 664–672.

    Article  PubMed  CAS  Google Scholar 

  • Small, D. M., Gitelman, D. R., Gregory, M. D., Nobre, A. C., Parrish, T. B., & Mesulam, M. -M. (2003). The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neuroimage, 18, 633–641.

    Article  PubMed  CAS  Google Scholar 

  • Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31, 137–149.

    CAS  Google Scholar 

  • Stern, C. E., Owen, A. M., Tracey, I., Look, R. B., Rosen, B. R., & Petrides, M. (2000). Activity in ventrolateral and mid-dorsolateral prefrontal cortex during nonspatial visual working memory processing: Evidence from functional magnetic resonance imaging. Neuroimage, 11, 392–399.

    Article  PubMed  CAS  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-dimensional proportional system: An approach to cerebral imaging. Stuttgart: Thieme.

    Google Scholar 

  • Varakin, D. A., & Levin, D. T. (2006). Change blindness and visual memory: Visual representations get rich and act poor. British Journal of Psychology, 97, 51–77.

    Article  PubMed  Google Scholar 

  • Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions. Cerebral Cortex, 2, 435–443.

    PubMed  CAS  Google Scholar 

  • Wiese, H., & Daum, I. (2006). Frontal positivity discriminates true from false recognition. Brain Research, 1075, 183–192.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research was supported by DFG (GK-518), EU (“Eyewitness Memory”, FP6-043460), and the Köhler Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Kuehnel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuehnel, S., Mertens, M., Woermann, F.G. et al. Brain Activations During Correct and False Recognitions of Visual Stimuli: Implications for Eyewitness Decisions on an fMRI Study Using a Film Paradigm. Brain Imaging and Behavior 2, 163–176 (2008). https://doi.org/10.1007/s11682-008-9026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-008-9026-3

Keywords

Navigation