Skip to main content
Log in

Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.)

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

This article has been updated

Abstract

Gingko biloba accumulates high levels of secondary metabolites of pharmaceutical value. Ginkgo calli develop a typical browning that reduces its regenerative capacity and thus its usefulness. To elucidate the browning mechanism, histological, transcriptomic, and metabolic alterations were compared between green and browning calli derived from immature ginkgo embryos. Histological observations revealed that browning calli had a more loosely arranged cell structure and accumulated more tannins than in green calli. Integrated metabolic and transcriptomic analyses showed that phenylpropanoid metabolism was specifically activated in the browning calli, and 428 differentially expressed genes and 63 differentially abundant metabolites, including 12 flavonoid compounds, were identified in the browning calli compared to the green calli. Moreover, the expression of flavonol synthase (FLS) and UDP-glucuronosyl-transferase (UGT) genes involved in the flavonoid pathway was more than tenfold higher in browning calli than in green calli, thus promoting biosynthesis of flavonol, which serves as a substrate to form glycosylated flavonoids. Flavonoid glycosides constituted the major coloring component of the browning calli and may act in response to multiple stress conditions to delay cell death caused by browning. Our results revealed the cellular and biochemical changes in browning callus cells that accompanied changes in expression of browning-related genes, providing a scientific basis for improving ginkgo tissue culturability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 02 April 2023

    original version is updated due to incomplete text in the footnotes as “The online version is available at http://www.springerlink.com”

References

  • Alseekh S, Fernie AR (2018) Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 94:933–942

    Article  CAS  PubMed  Google Scholar 

  • Altunkaya A, Gökmen V (2009) Effect of various anti-browning agents on phenolic compounds profile of fresh lettuce (L. sativa). Food Chem 117:122–126

    Article  CAS  Google Scholar 

  • Böttner L, Grabe V, Gablenz S, Böhme N, Appenroth KJ, Gershenzon J, Huber M (2021) Differential localization of flavonoid glucosides in an aquatic plant implicates different functions under abiotic stress. Plant Cell Environ 44:900–914

    Article  PubMed  Google Scholar 

  • Cheng SY, Zhang WW, Sun NN, Xu F, Li LL, Liao YL, Cheng H (2014) Production of flavonoids and terpene lactones from optimized Ginkgo biloba tissue culture. Not Bot Horti Agrobo 42:88–93

    Article  CAS  Google Scholar 

  • Cheynier V (2012) Phenolic compounds: from plants to foods. Phytochem Rev 11:153–177

    Article  CAS  Google Scholar 

  • Dong NQ, Lin HX (2021) Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J Integr Plant Biol 63:180–209

    Article  CAS  PubMed  Google Scholar 

  • Dong YS, Fu CH, Su P, Xu XP, Yuan J, Wang S, Zhang M, Zhao CF, Yu LJ (2016) Mechanisms and effective control of physiological browning phenomena in plant cell cultures. Physiol Plantarum 156:13–28

    Article  CAS  Google Scholar 

  • Dong NQ, Sun YW, Guo T, Shi CL, Zhang YM, Kan Y, Xiang YH, Zhang H, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Wang Y, Ye WW, Shan JX, Lin HX (2020) UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat Commun 11:1–16

    Article  CAS  Google Scholar 

  • Eisvand F, Razavi BM, Hosseinzadeh H (2020) The effects of Ginkgo biloba on metabolic syndrome: A review. Phytother Res 34:1798–1811

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eveland AL, Jackson DP (2012) Sugars, signalling, and plant development. J Exp Bot 63:3367–3377

    Article  CAS  PubMed  Google Scholar 

  • Fang CY, Luo J (2019) Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism. Plant J 97:91–100

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Xue JQ, Xue YQ, Liu R, Ren XX, Wang SL, Zhang XX (2020) Transcriptome sequencing and identification of key callus browning-related genes from petiole callus of tree peony (Paeonia suffruticosa cv. Kao) cultured on media with three browning inhibitors. Plant Physiol Bioch 149:36–49

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hao GP, Du XH, Zhao FX, Shi RJ, Wang JM (2009) Role of nitric oxide in UV-B-induced activation of PAL and stimulation of flavonoid biosynthesis in Ginkgo biloba callus. Plant Cell Tiss Org 97:175–185

    Article  CAS  Google Scholar 

  • He Y, Guo XL, Lu R, Niu B, Pasapula V, Hou P, Cai F, Xu Y, Chen F (2009) Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell Tiss Org 98:11–17

    Article  CAS  Google Scholar 

  • Hesami M, Tohidfar M, Alizadeh M, Daneshvar MH (2020) Effects of sodium nitroprusside on callus browning of Ficus religiosa: an important medicinal plant. J for Res 31:789–796

    Article  CAS  Google Scholar 

  • Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714

    Article  CAS  PubMed  Google Scholar 

  • Irshad M, He BZ, Liu S, Mitra S, Debnath B, Li M, Rizwan HM, Qiu DL (2017) In vitro regeneration of Abelmoschus esculentus L. cv. Wufu: Influence of anti-browning additives on phenolic secretion and callus formation frequency in explants. Hortic Environ Biote 58:503–513

    Article  CAS  Google Scholar 

  • Jones AMP, Saxena PK (2013) Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PloS One 8:e76802.

  • Jung IJ, Ahn JW, Jung S, Hwang JE, Hong MJ, Choi HI, Kim JB (2019) Overexpression of rice jacalin-related mannose-binding lectin (OsJAC1) enhances resistance to ionizing radiation in Arabidopsis. BMC Plant Biol 19:1–16

    Article  CAS  Google Scholar 

  • Kaewubon P, Ilok-Towatana HA, N, Teixeira D, Meesawat U, (2015) Ultrastructural and biochemical alterations during browning of pigeon orchid (Dendrobium crumenatum Swartz) callus. Plant Cell Tiss Org 121:53–69

    Article  CAS  Google Scholar 

  • Kwak EJ, Lim SI (2005) Inhibition of browning by antibrowning agents and phenolic acids or cinnamic acid in the glucose–lysine model. J Sci Food Agr 85:1337–1342

    Article  CAS  Google Scholar 

  • Laukkanen H, Rautiainen L, Taulavuori E, Hohtola A (2000) Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiol 20:467–475

    Article  CAS  PubMed  Google Scholar 

  • Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G (2016) Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci 7:735

    PubMed  PubMed Central  Google Scholar 

  • Li Q, Yu HM, Meng XF, Lin JS, Li YJ, Hou BK (2018) Ectopic expression of glycosyltransferase UGT76E11 increases flavonoid accumulation and enhances abiotic stress tolerance in Arabidopsis. Plant Biol 20:10–19

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma DW, Constabel CP (2019) MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends Plant Sci 24:275–289

    Article  CAS  PubMed  Google Scholar 

  • Mohanta TK, Occhipinti A, Zebelo SA, Foti M, Fliegmann J, Bossi S, Maffei ME, Bertea CM (2012) Ginkgo biloba responds to herbivory by activating early signaling and direct defenses. PLoS ONE 7:e32822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafa NR, de Winter W, van Iren F, Verpoorte R (2011) Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc 6:715–742

    Article  CAS  PubMed  Google Scholar 

  • Nash KM, Shah ZA (2015) Current perspectives on the beneficial role of Ginkgo biloba in neurological and cerebrovascular disorders. Integr Med Res 10:1–9

    Google Scholar 

  • Peng M, Shahzad R, Gul A, Subthain H, Shen SQ, Lei L, Zheng ZG, Zhou JJ, Lu DD, Wang SC, Nishawy E, Liu XQ, Tohge T, Fernie AR, Luo J (2017) Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat Commun 8:1–12

    Article  Google Scholar 

  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips GC, Garda M (2019) Plant tissue culture media and practices: an overview. In Vitro Cell Dev-Pl 55:242–257

    Article  Google Scholar 

  • Phongtongpasuk S, Piemthongkham P (2014) Shikimic acid production from Ginkgo biloba via callus culture. Adv Mat Res 931–932:1524–1528

    Google Scholar 

  • Popova EV, Lee EJ, Wu CH, Hahn EJ, Paek KY (2009) A simple method for cryopreservation of Ginkgo biloba callus. Plant Cell Tiss Org 97:337–343

    Article  CAS  Google Scholar 

  • Radia A, Jocelyne TG (2003) Root formation from transgenic calli of Ginkgo biloba. Tree Physiol 23:713–718

    Article  Google Scholar 

  • Santiago LJM, Louro RP, De Oliveira DE (2000) Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb. and their induction by copper sulphate. Ann Bot-London 86:1023–1032

    Article  CAS  Google Scholar 

  • Shi R, Shuford CM, Wang JP, Sun YH, Yang Z, Chen HC, Tunlaya-Anukit S, Li Q, Liu J, Muddiman DC, Sederoff RR, Chiang VL (2013) Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta 238:487–497

    Article  CAS  PubMed  Google Scholar 

  • Singh CR (2018) Review on problems and its remedy in plant tissue culture. Asian J Biol Life Sci 11:165–172

    Article  CAS  Google Scholar 

  • Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  CAS  PubMed  Google Scholar 

  • Su XJ, Shen GA, Di SK, Dixon RA, Pang YZ (2017) Characterization of UGT716A1 as a multi-substrate UDP: flavonoid glucosyltransferase gene in Ginkgo biloba. Front Plant Sci 8:2085

    Article  PubMed  PubMed Central  Google Scholar 

  • Suekawa M, Fujikawa Y, Esaka M (2019) Exogenous proline has favorable effects on growth and browning suppression in rice but not in tobacco. Plant Physiol Bioch 142:1–7

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ, Outhavong V (2004) Exogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine. Physiol Plantarum 122:386–395

    Article  CAS  Google Scholar 

  • Toivonen PM, Brummell DA (2008) Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Tec 48:1–14

    Article  CAS  Google Scholar 

  • Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Cui JW, Jin B, Zhao JG, Xu HM, Lu ZG, Li WX, Li XX, Li LL, Liang EY, Rao XL, Wang SF, Fu CX, Cao FL, Dixon RA, Lin JX (2020) Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proc Natl Acad Sci USA 117:2201–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen W, Alseekh S, Fernie AR (2020) Conservation and diversification of flavonoid metabolism in the plant kingdom. Curr Opin Plant Biol 55:100–108

    Article  CAS  PubMed  Google Scholar 

  • Wilson AE, Tian L (2019) Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. Plant J 100:1273–1288

    Article  CAS  PubMed  Google Scholar 

  • Xie C, Mao XZ, Huang JJ, Ding Y, Wu JM, Dong S, Kong L, Gao G, Li CY, Wei LP (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu CJ, Zeng BY, Huang JM, Huang W, Liu YM (2015a) Genome-wide transcriptome and expression profile analysis of Phalaenopsis during explant browning. PLoS ONE 10:e0123356

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu WJ, Dubos C, Lepiniec L (2015b) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Xu NT, Liu S, Lu ZG, Pang SY, Wang L, Wang L, Li WX (2020) Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings. Plants 9:1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Liu HL, Yang JL, Gupta VK, Jiang YM (2018) New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci Tech 79:116–124

    Article  CAS  Google Scholar 

  • Yang XM, Zhou TT, Su XY, Wang GB, Zhang XH, Guo QR, Cao FL (2021a) Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. J for Res 32:765–778

    Article  CAS  Google Scholar 

  • Yang XM, Zhou TT, Wang MK, Li TT, Wang GB, Fu FF, Cao FL (2021b) Systematic investigation and expression profiles of the GbR2R3-MYB transcription factor family in ginkgo (Ginkgo biloba L.). Int J Biol Macromol 172:250–262

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Hanada K (2011) An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J 66:182–193

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Higashi Y, Nakabayashi R (2019) The origin and evolution of plant flavonoid metabolism. Front Plant Sci 10:943

    Article  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang WW, Xu F, Cheng SY, Liao YL (2018) Characterization and functional analysis of a MYB gene (GbMYBFL) related to flavonoid accumulation in Ginkgo biloba. Genes Genom 40:49–61

    Article  CAS  Google Scholar 

  • Zhang K, Su JJ, Xu M, Zhou ZH, Zhu XY, Ma X, Hou JJ, Tan LB, Zhu ZF, Cai HW, Liu FX, Sun HY, Gu P, Li C, Liang YT, Zhao WS, Sun CQ, Fu YC (2020) A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat Commun 11:443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang WW, Liu CQ, Zhao J, Ma TY, He ZD, Huang MG, Wang YS (2021) Modification of structure and functionalities of ginkgo seed proteins by pH-shifting treatment. Food Chem 358:129862

    Article  CAS  PubMed  Google Scholar 

  • Zhao YP, Fan GY, Yin PP, Sun S, Li N, Hong XN, Hu G, Zhang H, Zhang FM, Han JD, Hao YJ, Xu QW, Yang XW, Xia WJ, Chen WB, Lin HY, Zhang R, Chen J, Zheng XM, Lee SM, Lee J, Uehara K, Wang J, Yang HM, Fu CX, Liu X, Xu X, Ge S (2019) Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nat Commun 10:4201

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou ZY (2009) An overview of fossil Ginkgoales. Palaeoworld 18:1–22

    Article  CAS  Google Scholar 

  • Zhou TT, Yang XM, Fu FF, Wang GB, Cao FL (2020) Selection of suitable reference genes based on transcriptomic data in Ginkgo biloba under different experimental conditions. Forests 11:1217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang-Fang Fu or Fuliang Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the Natural Science Foundation of Jiangsu Province (BK20210611), the China Postdoctoral Science Foundation (2018M642261), the Postdoctoral Science Foundation of Jiangsu Province (2018K197C), the Jiangsu Science and Technology Plan Project (BE2021367) and the National Natural Science Foundation of China (31971689).

The original version is updated due to incomplete text in the footnotes as “The online version is available at http://www.springerlink.com

The online version is available at http://www.springerlink.com.

Corresponding editor: Yanbo Hu

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Xu, Q., Le, L. et al. Comparative histology, transcriptome, and metabolite profiling unravel the browning mechanisms of calli derived from ginkgo (Ginkgo biloba L.). J. For. Res. 34, 677–691 (2023). https://doi.org/10.1007/s11676-022-01519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-022-01519-9

Keywords

Navigation