Skip to main content
Log in

Early evaluation of growth traits of Larix kaempferi clones

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Early selection is an important method to shorten the breeding cycle for tree species, which may differ in the time for early selection. To evaluate the early selected time for Larix kaempferi, tree height and diameter at breast height of 57 L. kaempferi clones were measured over many different growth years. The results indicated that, except for age × clone interaction for diameter at breast height (P = 0.741), there were significant differences among all variation sources (P < 0.01). The coefficient of phenotypic variation ranged from 14.89 to 35.65% for height and from 19.17 to 23.86% for diameter at breast height in different growth years. The repeatability of height and of diameter at breast height among clones was high, ranging from 0.6181 to 0.8531 (height) and from 0.8443 to 0.8497 (diameter at breast height), in different growth years. There were significant positive correlations between all pairs of growth traits except between height in the 2nd growth year and height in the 30th growth year; and between height in the 2nd growth year × diameter at breast height in the 30th growth year. With a comprehensive evaluation method and a selection ratio of 10%, L65, L1, L62, L9, L15, and L78 were selected as excellent clones in the 30th growth year. Their average values of height and diameter at breast height were 9.81 and 16.57% higher than the overall average, representing genetic gains of 6.46 and 13.99%, respectively. This study provides a theoretical foundation for the genetic improvement of L. kaempferi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achere V (2004) Chloroplast and mitochondrial molecular tests identify European × Japanese larch hybrids. Theor Appl Genet 108:1643–1649

    Article  PubMed  CAS  Google Scholar 

  • Apiolaza LA (2009) Very early selection for solid wood quality: screening for early winners. Ann For Sci. doi:10.1051/forest/2009047

    Article  Google Scholar 

  • Arcade A, Anselin F, Faivre RP (2000) Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theor Appl Genet 100:299–307

    Article  CAS  Google Scholar 

  • Balocchi C, Bridgwater F, Zobel B, Jahromi S (1993) Age trends in genetic parameters for tree height in a nonselected population of loblolly pine. For Sci 39(2):231–251

    Google Scholar 

  • Bi CX, Guo JZ, Wang HW, Shu QY (2000) The correlation and path analysis on the quantity characters of Chinese pine. J Northwest For Univ 15(2):7–12

    Google Scholar 

  • Burczyk J, Nikkanen T, Lewandowski A (1997) Evidence of an unbalanced mating pattern in a seed orchard composed of two larch species. Silvae Genet 46:176–181

    Google Scholar 

  • Chen XY, Hawkins B, Xie CY (2003) Age trends in genetic parameters and early selection of lodgepole pine provenances with particular reference to the lambeth model. For Genet 10(3):249–258

    Google Scholar 

  • Collet C, Chenost C (2006) Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions. Forestry 79(5):489–502

    Article  Google Scholar 

  • Crane J, Dickmann D, Flore J (1983) Photosynthesis and transpiration by young Larix kaempferi trees: C3 responses to light and temperature. Physiol Plant 59(4):635–640

    Article  Google Scholar 

  • Diao S, Hou YM, Xie YH, Sun XM (2016) Age trends of genetic parameters, early selection and family by site interactions for growth traits in Larix kaempferi open-pollinated families. BMC Genet 17:104–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Du CQ, Xu YZ, Sun XH, Liu YH, Xie PS (2015) Variation of growth traits and early selection of Larix Kaempferi clones in sub-alpine area of western Hubei Province. J Huazhong Agric Univ 34(3):19–23

    Google Scholar 

  • Francisco F, Messias G, Helaine C, Pedro C, Telma N, Ana P, Alexandre P, Geraldo A (2008) Selection and estimation of the genetic gain in segregating generations of papaya (Carica papaya L.). Crop Breed Appl Biotechnol 8:1–8

    Article  Google Scholar 

  • Fujimoto T, Kita K, Uchiyama K (2006) Age trends in the genetic parameters of wood density and the relationship with growth rates in hybrid larch (Larix gmelinii var. japonica × L. kaemferi) F1. Jpn For Soc Springer Verlag Tokyo 11:157–163

    Google Scholar 

  • Fukatsu E, Fukuda Y, Takahashi M, Nakada R (2008) Clonal variation of carbon content in wood of Larix kaempferi (Japanese larch). J Wood Sci 54:247–251

    Article  CAS  Google Scholar 

  • Fukatsu E, Tsubomura M, Fujisawa Y, Nakada R (2013) Genetic improvement of wood density and radial growth in Larix kaempferi: results from a diallel mating test. Ann For Sci 70:451–459

    Article  Google Scholar 

  • Goncalves P, Bortoletto N, Cardinal A, Gouvea L, Costa R, Moraes M (2005) Age–age correlation for early selection of rubber tree genotypes in Sao Paulo State, Brazil. Genet Mol Biol 28:758–764

    Article  Google Scholar 

  • Gwaze DP, Bridgwater FE (2002) Determining optimum selection age for diameter and height in loblolly pine (Pinus taeda). For Genet 9:159–165

    Google Scholar 

  • Haapanen M (2001) Time trends in genetic parameter estimates and selection efficiency for Scots pine in relation to field testing method. For Genet 8:129–144

    Google Scholar 

  • Hai PH, Jansson G, Harwood C, Hannrup B, Thinh HH (2008) Genetic variation in growth, stem straightness and branch thickness in clonal trials of Acacia auriculiformis at three contrasting sites in Vietnam. For Ecol Manag 255:156–167

    Article  Google Scholar 

  • Hansen J, Roulund H (1997) Genetic parameters for spiral grain, stem form, pilodyn and growth in 13 years old clones of Sitka Spruce (Picea sitchensis (Bong.) Carr.). Silvae Genet 46:107–113

    Google Scholar 

  • Hou YM, Quan YS, Cao J, Guan LH (2012) Study on superior family selection of Larix kaempferi. J Cent South Univ For Technol 3(9):6–10

    Google Scholar 

  • Isik F, Li BL, Frampton J (2003) Estimates of additive, dominance and epistatic genetic variances from a clonally replicated test of loblolly pine. For Sci 49(1):77–88

    Google Scholar 

  • Isik K, Kleinschmit J, Steiner W (2010) Age–age correlations and early selection for height in a clonal genetic test of Norway spruce. For Sci 56(2):212–221

    Google Scholar 

  • Jansson G, Li BL, Hannrup B (2003) Time trends in genetic parameters for height and optimum age for parental selection in Scots pine. For Sci 49:696–705

    Google Scholar 

  • Jiao YD, Zhao K, Qin YF, Hu ZY, Liu HF (2005) Study on superior clones and early selection of Larix kaempferi. J Henan For Sci Technol 25(2):9–11

    Google Scholar 

  • Karacic A, Weih M (2006) Variation in growth and resource utilization among eitht poplar clones grown under different irrigation and fertilization regimes in Sweden. Biomass Bioenerg 30:115–124

    Article  Google Scholar 

  • King JN, Burdon RD (1991) Time trends in inheritance and projected efficiencies of early selection in a large 17-year-old progeny test of Pinus radiata. Can J For Res 21(8):1200–1207

    Article  Google Scholar 

  • Kroon J, Ericsson T, Jansson G, Andersson B (2011) Patterns of genetic parameters for height in field genetic tests of Picea abies and Pinus sylvestris in Sweden. Tree Genet Genomes 7(6):1099–1111

    Article  Google Scholar 

  • Kumar D, Singh NB (2001) Age–age correlation for early selection of clones of Populus in India. Silvae Genet 50:103–108

    Google Scholar 

  • Kurinobu S (2005) Forest tree breeding for Japanese larch. Eurasian J For Res 8:127–134

    Google Scholar 

  • Lai M, Sun XM, Chen DS, Xie YH, Zhang SG (2014) Age-related trends in genetic parameters for Larix kaempferi and their implications for early selection. BMC Genet 15(Suppl 1):S10

    Article  PubMed  PubMed Central  Google Scholar 

  • Leksono B, Kurinobu S, Ide Y (2006) Optimum age for selection base on a time trend of genetic parameters related to diameter growth in seedling seed orchards of Eucalyptus pellita in Indonesia. J For Res 11:359–363

    Article  Google Scholar 

  • Liu LX, Bai YR, Wu ZY, Zhao A, Ma ZG (2009) Experiment on choosing excellent clones of Larix kaempferi Carr. J Inner Mong For Technol 35(2):10–13

    Google Scholar 

  • Ma SX (2006) Studies on genetic variation and early selection of Japanese larch clone. Master Thesis of Henan Agricultural University

  • Maniee MD, Kahrizi MD, Mohammadi R (2009) Genetic variability of some morphophysiological traits in durum wheat (Triticum turgidum var. durum). J Appl Sci 9:1383–1387

    Article  Google Scholar 

  • Marron N, Ceulemans R (2006) Genetic variation of leaf traits related to productivity in a Populus deltoides × Populus nigra family. Can J For Res 36:390–400

    Article  Google Scholar 

  • Matheson A, Spencer DJ, Magnussen D (1994) Optimum age for selection in pinus radiata using basal area under bark for age–age correlations. Silvae Genet 43:352–357

    Google Scholar 

  • Montes CS, Hernandez RE, Beaulieu J, Weber JC (2008) Genetic variation in wood color and its correlations with tree growth and wood density of Calycophyllum spruceanum at an early age in the Peruvian Amazon. New For 35:57–73

    Article  Google Scholar 

  • Moriguchi Y, Kita K, Uchiyama K, Kuromaru M, Tsumura Y (2008) Enhanced hybridization rates in a Larix gmelinii var. japonica × L. kaempferi interspecific seed orchard with a single maternal clone revealed by cytoplasmic DNA markers. Tree Genet Genomes 4:637–645

    Article  Google Scholar 

  • Mwase WF, Savill PS, Hemery G (2008) Genetic parameter estimates for growth and form traits in common ash (Fraxinus excelsior, L.) in a breeding seedling orchard at Little Wittenham in England. New For 36:225–238

    Article  Google Scholar 

  • Nagasaka K, Yoshimura K, Akashi T, Arai K, Yamamoto C (2011) Assessment of characteristics and grouping of Larix kaempferi provenances in provenance test sites in Nagano prefecture in Japan. J Jap For Soc 93:179–186

    Article  Google Scholar 

  • Nakada R, Fujisawa Y, Taniguchi T (2005) Variations of wood properties between plus-tree clones in Larix kaempferi (Lamb.) Carrière. Bull For Tree Breed Cent 21:85–105

    Google Scholar 

  • Neale DB (2007) Genomics to tree breeding and forest health. Curr Opin Genet Dev 17:539–544

    Article  PubMed  CAS  Google Scholar 

  • Oshima T (1998) The age trends in the combining ability and heritability in the wood density in Japanese larch. Trans Meet Hokkaido Branch Jpn For Soc 46:157–159

    Google Scholar 

  • Pâques LE (2004) Roles of European and Japanese larch in the genetic control of growth, architecture and wood quality traits in interspecific hybrids (Larix × eurolepis Henry). Ann For Sci 61:25–33

    Article  Google Scholar 

  • Pâques LE, Millier F, Rozenberg P (2010) Selection perspectives for genetic improvement of wood stiffness in hybrid larch (Larix × eurolepis Henry). Tree Genet Genomes 6:83–92

    Article  Google Scholar 

  • Pliura A, Zhang SY, Mackay J, Bousquet J (2007) Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. For Ecol Manag 238:92–106

    Article  Google Scholar 

  • Safavi SA, Pourdad SA, Mohmmad T, Mahmoud K (2010) Assessment of genetic variation among safflower (Carthamus tinctorius L.) accessions using agro-morphological traits and molecular markers. J Food Agric Environ 8(1):616–625

    CAS  Google Scholar 

  • San J, Uchida K, Tomaru N (2009) Mitochondrial DNA variation in natural populations of Japanese larch (Larix kaempferi). Silvae Genet 58:5–6

    Google Scholar 

  • Shi LW (2012) Statistical analysis from entry to the master of SPSS 19.0. Tsinghua University Press, Beijing

    Google Scholar 

  • Shigematsu Y (1991) The wood quality of planting trees for Japanese larch relating with growth. II. The grade of wood for planting trees of Japanese larch. Mokuzai Kogyo 46:9–16

    Google Scholar 

  • Sixto H, Salvia J, Barrio M, Ciria MP, Canellas I (2011) Genetic variation and genotype-environment interactions in short rotation Populus plantations in southern Europe. New For 42:163–177

    Article  Google Scholar 

  • Sumida A, Miyaura T, Torii H (2013) Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol 33:106–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun XM (2003) Selection of superior Larix kaempferi families for pulpwood purpose and family based growth simulation. Ph.D. Thesis of Chinese Academy of Forestry

  • Sun XM, Zhang SG, Hou YM, Li SY (2004) Age trends of genetic parameters for growth traits in short rotation Larix kaempferi families. Sci Silvae Sin 40(6):68–74

    Google Scholar 

  • Takata K, Koizumi A, Ueda K (1992) Variations of radial growth and wood quality among provenances in Japanese larch. Mokuzai Gakkaishi 38:1082–1088

    Google Scholar 

  • Teruyoshi N, Kazutoshi N, Hiroshi Y, Yoshihiko T (2014) Provenance tests for survival and growth of 50-year-old Japanese larch (Larix kaempferi) trees related to climatic conditions in central Japan. Tree Genet Genomes 10:87–99

    Article  Google Scholar 

  • Toda R, Mikami S (1976) The provenance trials of Japanese larch established in Japan and the tentative achievements. Silvae Genet 25:209–216

    Google Scholar 

  • Vasquez J, Dvorak WS (1996) Trend in variance and heritabilities with stand development of tropical pines. Can J For Res 26:1473–1480

    Article  Google Scholar 

  • Weng YH, Tosh KJ, Park YS, Fullarton MS (2007) Age-related trends in genetic parameters for Jack Pine and their implications for early selection. Silvae Genet 56(5):242–251

    Article  Google Scholar 

  • Xia H, Zhao GH, Zhang LS, Sun XY, Yin SP, Liang DY, Li Y, Zheng M, Zhao XY (2016) Genetic and variation analyses of growth traits of half-sib Larix olgensis families in northeastern China. Euphytica. doi:10.1007/s10681-016-1765-4

    Article  Google Scholar 

  • Xu JR (2006) Quantitative genetics of forest. China Forestry Publishing, Beijing

    Google Scholar 

  • Xu SD, Sun XM, Chen JL, Li DX, Wang GF, Huang XF, Qi WY (2014) Primary research on fine family and clone of Larix kaempferi. Hubei For Sci Technol 43(3):12–16

    Google Scholar 

  • Zas R, Merlo E, Fernández-López J (2004) Genetic parameter estimates for Maritime pine in the Atlantic coast of North-west Spain. For Genet 11(1):45–53

    Google Scholar 

  • Zhang ZG, Ma JW, Jin XC, Wang HC, Ding PJ, Hu MH, Pan CL, Lei SG (2013) Analysis and selection of progeny test forest of the open pollinated family of Japanese larch. J Northwest For Univ 28(4):74–79

    Google Scholar 

  • Zhao XY, Hou W, Zheng HQ, Zhang ZY (2013) Analyses of genotypic variation in white poplar at four sites in China. Silvae Genet 62(4–5):187–195

    Article  Google Scholar 

  • Zhao XY, Bian XY, Liu MR, Li ZX, Li Y, Zheng M, Teng WH, Jiang J, Liu GF (2014) Analysis of genetic effects on complete diallel cross test of Betula platyphylla. Euphytica 200:221–229

    Article  Google Scholar 

  • Zhao XY, Xia H, Wang XW, Wang C, Liang DY, Li KL, Liu GF (2016) Variance and stability analyses of growth characters in halfsib Betula platyphylla families at three different sites in China. Euphtyica 208:173–186

    Article  Google Scholar 

  • Zhou GX, Hu X, Zhu Q, Ning SH (2008) Research on the relationship between stand productivity and site condition of Larix kaempferi. Ecol Econ 4:216–226

    Google Scholar 

  • Zhou H, Fries A, Wu HX (2014) High negative genetic correlations between growth traits and wood properties suggest incorporating multiple traits selection including economic weights for the future Scots pine breeding programs. Ann For Sci 71:463–472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YP, SL and CW have contributed equally to this work.

Corresponding author

Correspondence to Xiyang Zhao.

Additional information

Project funding: The work was supported by the Innovation Project of State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University) (No. 2016C02) and China Postdoctoral Science Foundation (2014M561315).

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Li, S., Wang, C. et al. Early evaluation of growth traits of Larix kaempferi clones. J. For. Res. 29, 1031–1039 (2018). https://doi.org/10.1007/s11676-017-0492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0492-6

Keywords

Navigation