Skip to main content
Log in

Typical cell signaling response to ionizing radiation: DNA damage and extranuclear damage

  • Review
  • Published:
Chinese Journal of Cancer Research

Abstract

To treat many types of cancer, ionizing radiation (IR) is primarily used as external-beam radiotherapy, brachytherapy, and targeted radionuclide therapy. Exposure of tumor cells to IR can induce DNA damage as well as generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) which can cause non-DNA lesions or extracellular damage like lipid perioxidation. The initial radiation-induced cell responses to DNA damage and ROS like the proteolytic processing, as well as synthesis and releasing ligands (such as growth factors, cytokines, and hormone) can cause the delayed secondary responses in irradiated and unirradiated bystander cells through paracrine and autocrine pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res 2002; 52:6394–6396.

    Google Scholar 

  2. Azzam EI, de Toledo SM, Gooding T, et al. Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles. Radiat Res 1998; 150:497–504.

    Article  PubMed  CAS  Google Scholar 

  3. Bourguignon MH, Gisone PA, Perez MR, et al. Genetic and epigenetic features in radiation sensitivity part I: Cell signalling in radiation response. Eur J Nucl Med Mol Imaging 2005; 32:229–246.

    Article  PubMed  Google Scholar 

  4. Shiloh Y. ATM. From phenotype to functional genomics—and back. Ernst Schering Res found Workshop 2002; 36:51–70.

    PubMed  CAS  Google Scholar 

  5. Kastan MB, Lim DS. The many substrates and functions of ATM. Nat Rev Mol Cell Biol 2000; 1:179–186.

    Article  PubMed  CAS  Google Scholar 

  6. Brown EJ, Baltimore D. Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev 2003; 17:615–628.

    Article  PubMed  CAS  Google Scholar 

  7. Cha RS, Kleckner N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 2002; 297:602–606.

    Article  PubMed  CAS  Google Scholar 

  8. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003; 300:1542–1548.

    Article  PubMed  CAS  Google Scholar 

  9. Nyberg KA, Michelson RJ, Putnam CW. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2002; 36:617–656.

    Article  PubMed  CAS  Google Scholar 

  10. Zhou BB, Elledge SJ. The DNA damage response: Putting checkpoints in perspective. Nature 2000; 408:433–439.

    Article  PubMed  CAS  Google Scholar 

  11. Hehnly H, Doxsey S. Polarity sets the stage for cytokinesis. Mol Biol Cell 2012; 23:7–11.

    Article  PubMed  CAS  Google Scholar 

  12. Bell S, Klein C, Muller L, et al. P53 contains large unstructured regions in its native state. J Mol Biol 2002; 322:917–927.

    Article  PubMed  CAS  Google Scholar 

  13. Bates S, Phillips AC, Clark PA, et al. p14ARF links the tumor suppressors RB and p53. Nature 1998; 395:124–125.

    Article  PubMed  CAS  Google Scholar 

  14. Tombes RM, Auer KL, Mikkelsen R, et al. The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. Biochem J 1998; 330:1451–1460.

    PubMed  CAS  Google Scholar 

  15. Kavanagh BD, Lin PS, Chen P, et al. Radiation-induced enhanced proliferation of human squamous cancer cells in vitro: A release from inhibition by epidermal growth factor. Clin Cancer Res 1995; 1:1557–1562.

    PubMed  CAS  Google Scholar 

  16. Bublil EM, Yarden Y. The EGF receptor family: Spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 2007; 19:124–134.

    Article  PubMed  CAS  Google Scholar 

  17. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004; 304:1497–1500.

    Article  PubMed  CAS  Google Scholar 

  18. Clutton SM, Townsend KM, Walker C, et al. Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis 1996; 17:1633–1639.

    Article  PubMed  CAS  Google Scholar 

  19. Azzam EI, De Toledo SM, Spitz DR, et al. Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures. Cancer Res 2002; 62:5436–5442.

    PubMed  CAS  Google Scholar 

  20. Nagar S, Smith LE, Morgan WF. Characterization of a novel epigenetic effect of ionizing radiation: The death-inducing effect. Cancer Res 2003; 63:324–328.

    PubMed  CAS  Google Scholar 

  21. Munro AJ. Bystander effects and their implications for clinical radiotherapy. J Radiol Prot 2009; 29:A133–A142.

    Article  PubMed  Google Scholar 

  22. Nagasawa H, Cremesti A, Kolesnick R, et al. Involvement of membrane signaling in the bystander effect in irradiated cells. Cancer Res 2002; 62:2531–2534.

    PubMed  CAS  Google Scholar 

  23. Boothman DA, Meyers M, Odegaard E, et al. Altered G1 checkpoint control determines adaptive survival responses to ionizing radiation. Mutat Res 1996; 358:143–153.

    Article  PubMed  Google Scholar 

  24. Mohan N, Meltz ML. Induction of nuclear factor kappa B after low-dose ionizing radiation involves a reactive oxygen intermediate signaling pathway. Radiat Res 1994;140:97–104.

    Article  PubMed  CAS  Google Scholar 

  25. Prasad AV, Mohan N, Chandrasekar B,. Activation of nuclear factor kappa B in human lymphoblastoid cells by low-dose ionizing radiation. Radiat Res 1994; 138:367–372.

    Article  PubMed  CAS  Google Scholar 

  26. Mohan N, Sadeghi K, Reiter RJ, et al. The neurohormone melatonin inhibits cytokine, mitogen and ionizing radiation induced NF-kappa B. Biochem Mol Biol Int 1995; 37:1063–1070.

    PubMed  CAS  Google Scholar 

  27. Coward WR, Okayama Y, Sagara H, et al. NF-kappa B and TNF-alpha: A positive autocrine loop in human lung mast cells? J Immunol 2002; 169:5287–5293.

    PubMed  Google Scholar 

  28. Haimovitz-Friedman A, Vlodavsky I, Chaudhuri A. Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res 1991; 51:2552–2558.

    PubMed  CAS  Google Scholar 

  29. Grilli M, Chiu JJ, Lenardo MJ. NF-kappa B and rel: Participants in a multiform transcriptional regulatory system. Int Rev Cytol 1993; 143:1–62.

    Article  PubMed  CAS  Google Scholar 

  30. Wu J, Dent P, Jelinek T, et al. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3′,5′-monophosphate. Science 1993; 262:1065–1069.

    Article  PubMed  CAS  Google Scholar 

  31. Wang CY, Mayo MW, Baldwin AS Jr. TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-kappaB. Science 1996; 274:784–787.

    Article  PubMed  CAS  Google Scholar 

  32. Lenardo MJ, Baltimore D. NF-kappa B: A pleiotropic mediator of inducible and tissue-specific gene control. Cell 1989; 58:227–229.

    Article  PubMed  CAS  Google Scholar 

  33. Szarek E, Cheah PS, Schwartz J, et al. Molecular genetics of the developing neuroendocrine hypothalamus. Mol Cell Endocrinol 2010; 323:115–123.

    Article  PubMed  CAS  Google Scholar 

  34. Chen Q, Casali B, Pattacini L, et al. Tumor necrosis factor-alpha protects synovial cells from nitric oxide induced apoptosis through phosphoinositide 3-kinase akt signal transduction. J Rheumatol 2006; 33:1061–1068.

    PubMed  CAS  Google Scholar 

  35. Relic B, Bentires-Alj M, Ribbens C, et al. TNF-alpha protects human primary articular chondrocytes from nitric oxide-induced apoptosis via nuclear factor-kappaB. Lab Invest 2002; 82:1661–1672.

    PubMed  CAS  Google Scholar 

  36. Teoh N, Leclercq I, Pena AD, et al. Low-dose TNF-alpha protects against hepatic ischemia-reperfusion injury in mice: Implications for preconditioning. Hepatology 2003; 37:118–128.

    Article  PubMed  CAS  Google Scholar 

  37. Liu ZG, Hsu H, Goeddel DV, et al. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996; 87:565–576.

    Article  PubMed  CAS  Google Scholar 

  38. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today 1992; 13:151–153.

    Article  PubMed  CAS  Google Scholar 

  39. Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 1995; 81:495–504.

    Article  PubMed  CAS  Google Scholar 

  40. Hsu H, Shu HB, Pan MG, et al. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996; 84:299–308.

    Article  PubMed  CAS  Google Scholar 

  41. Hsu H, Huang J, Shu HB, et al. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4:387–396.

    Article  PubMed  CAS  Google Scholar 

  42. Lee FS, Hagler J, Chen ZJ, et al. Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 1997; 88:213–222.

    Article  PubMed  CAS  Google Scholar 

  43. Karin M, Delhase M. JNK or IKK, AP-1 or NF-kappaB, which are the targets for MEK kinase 1 action? Proc Natl Acad Sci USA 1998; 95:9067–9069.

    Article  PubMed  CAS  Google Scholar 

  44. Malinin NL, Boldin MP, Kovalenko AV, et al. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 1997; 385:540–544.

    Article  PubMed  CAS  Google Scholar 

  45. Singh N, Khanna N, Sharma H, et al. Insights into the molecular mechanism of apoptosis induced by TNF-alpha in mouse epidermal JB6-derived RT-101 cells. Biochem Biophys Res Commun 2002; 295:24–30.

    Article  PubMed  CAS  Google Scholar 

  46. Yang JQ, Zhao W, Duan H, et al. v-ha-RaS oncogene upregulates the 92-kDa type IV collagenase (MMP-9) gene by increasing cellular superoxide production and activating NF-kappaB. Free Radic Biol Med 2001; 31:520–529.

    Article  PubMed  CAS  Google Scholar 

  47. Baeuerle PA, Baltimore D. I kappa B: A specific inhibitor of the NF-kappa B transcription factor. Science 1988; 242:540–546.

    Article  PubMed  CAS  Google Scholar 

  48. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 1991; 10:2247–2258.

    PubMed  CAS  Google Scholar 

  49. Baeuerle PA, Baltimore D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell 1988; 53:211–217.

    Article  PubMed  CAS  Google Scholar 

  50. McBride WH, Pajonk F, Chiang CS, et al. NF-kappa B, cytokines, proteasomes, and low-dose radiation exposure. Mil Med 2002; 167:66–67.

    PubMed  Google Scholar 

  51. Brach MA, Hass R, Sherman ML, et al. Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J Clin Invest 1991; 88:691–695.

    Article  PubMed  CAS  Google Scholar 

  52. Sahijdak WM, Yang CR, Zuckerman JS, et al. Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation. Radiat Res 1994; 138:S47–S51.

    Article  PubMed  CAS  Google Scholar 

  53. Ghosh S, Baltimore D. Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B. Nature 1990; 344:678–682.

    Article  PubMed  CAS  Google Scholar 

  54. Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990; 10:2327–2334.

    PubMed  CAS  Google Scholar 

  55. Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci USA 1989; 86:2336–2340.

    Article  PubMed  CAS  Google Scholar 

  56. Cogswell JP, Godlevski MM, Wisely GB, et al. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol 1994; 153:712–723.

    PubMed  CAS  Google Scholar 

  57. Collart MA, Baeuerle P, Vassalli P. Regulation of tumor necrosis factor alpha transcription in macrophages: Involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol Cell Biol 1990; 10:1498–1506.

    PubMed  CAS  Google Scholar 

  58. Shakhov AN, Collart MA, Vassalli P, et al. Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. J Exp Med 1990; 171:35–47.

    Article  PubMed  CAS  Google Scholar 

  59. Ho YS, Howard AJ, Crapo JD. Molecular structure of a functional rat gene for manganese-containing superoxide dismutase. Am J Respir Cell Mol Biol 1991; 4:278–286.

    PubMed  CAS  Google Scholar 

  60. Wu H, Lozano G. NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J Biol Chem 1994; 269:20067–2074.

    PubMed  CAS  Google Scholar 

  61. Chu ZL, McKinsey TA, Liu L, et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci USA 1997; 94:10057–10062.

    Article  PubMed  CAS  Google Scholar 

  62. Stehlik C, de Martin R, Kumabashiri I, et al. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 1998; 188:211–216.

    Article  PubMed  CAS  Google Scholar 

  63. Messadi DV, Doung HS, Zhang Q, et al. Activation of NFkappaB signal pathways in keloid fibroblasts. Arch Dermatol Res 2004; 296:125–133.

    Article  PubMed  CAS  Google Scholar 

  64. Heckman CA, Mehew JW, Boxer LM. NF-kappaB activates bcl-2 expression in t(14;18) lymphoma cells. Oncogene 2002; 21:3898–3908.

    Article  PubMed  CAS  Google Scholar 

  65. Opipari AW Jr, Hu HM, Yabkowitz R, et al. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 1992; 267:12424–12427.

    PubMed  CAS  Google Scholar 

  66. Sonenshein GE. Rel/NF-kappa B transcription factors and the control of apoptosis. Semin Cancer Biol 1997; 8:113–119.

    Article  PubMed  CAS  Google Scholar 

  67. Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998; 281:1680–1683.

    Article  PubMed  CAS  Google Scholar 

  68. Sumitomo M, Tachibana M, Nakashima J, et al. An essential role for nuclear factor kappa B in preventing TNF-alpha-induced cell death in prostate cancer cells. J Urol 1999; 161:674–679.

    Article  PubMed  CAS  Google Scholar 

  69. Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996; 274:782–784.

    Article  PubMed  CAS  Google Scholar 

  70. Kato K, Takeuchi H, Miyahara N, et al. Distinct orders of GalNAc incorporation into a peptide with consecutive threonines. Biochem Biophys Res Commun 2001; 287:110–115.

    Article  PubMed  CAS  Google Scholar 

  71. Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998; 396:580–584.

    Article  PubMed  CAS  Google Scholar 

  72. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997; 3:917–921.

    Article  PubMed  CAS  Google Scholar 

  73. Grossman D, Kim PJ, Schechner JS, et al. Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc Natl Acad Sci USA 2001; 98:635–640.

    Article  PubMed  CAS  Google Scholar 

  74. Ciuffreda L, Del Bufalo D, Desideri M, et al. Growth-inhibitory and antiangiogenic activity of the MEK inhibitor PD0325901 in malignant melanoma with or without BRAF mutations. Neoplasia 2009; 11:720–731.

    PubMed  CAS  Google Scholar 

  75. Dong QG, Sclabas GM, Fujioka S, et al. The function of multiple IkappaB: NF-kappaB complexes in the resistance of cancer cells to taxol-induced apoptosis. Oncogene 2002; 21:6510–6519.

    Article  PubMed  CAS  Google Scholar 

  76. Tamatani M, Che YH, Matsuzaki H, et al. Tumor necrosis factor induces bcl-2 and bcl-x expression through NFkappaB activation in primary hippocampal neurons. J Biol Chem 1999; 274:8531–8538.

    Article  PubMed  CAS  Google Scholar 

  77. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3:221–227.

    Article  PubMed  CAS  Google Scholar 

  78. Wang Z, Yi J, Li H, et al. Extension of life-span of normal human fibroblasts by reconstitution of telomerase activity. Shi Yan Sheng Wu Xue Bao 2000; 33:129–140.

    PubMed  CAS  Google Scholar 

  79. Burger AM, Double JA, Newell DR. Inhibition of telomerase activity by cisplatin in human testicular cancer cells. Eur J Cancer 1997; 33:638–644.

    Article  PubMed  CAS  Google Scholar 

  80. Kondo S, Tanaka Y, Kondo Y, et al. Antisense telomerase treatment: Induction of two distinct pathways, apoptosis and differentiation. FASEB J 1998; 12:801–811.

    PubMed  CAS  Google Scholar 

  81. Mandal M, Kumar R. Bcl-2 modulates telomerase activity. J Biol Chem 1997; 272:14183–14187.

    Article  PubMed  CAS  Google Scholar 

  82. Fu W, Begley JG, Killen MW, et al. Anti-apoptotic role of telomerase in pheochromocytoma cells. J Biol Chem 1999; 274:7264–7271.

    Article  PubMed  CAS  Google Scholar 

  83. Yin L, Hubbard AK, Giardina C. NF-kappa B regulates transcription of the mouse telomerase catalytic subunit. J Biol Chem 2000; 275:36671–36675.

    Article  PubMed  CAS  Google Scholar 

  84. Wang J, Xie LY, Allan S, et al. Myc activates telomerase. Genes Dev 1998; 12:1769–1774.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H. Typical cell signaling response to ionizing radiation: DNA damage and extranuclear damage. Chin. J. Cancer Res. 24, 83–89 (2012). https://doi.org/10.1007/s11670-012-0083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11670-012-0083-1

Key wordes

Navigation