Skip to main content
Log in

Experimental Investigation and Thermodynamic Assessment of Phase Equilibria at the Ti-Mn side in the Ti-Mn-Mo Ternary System

  • Original Research Article
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The phase relationships of the Ti-Mn-Mo ternary system on the Ti-Mn side at 900 and 1000 °C were experimentally studied based on microstructure and phase constituents from the equilibrated alloys using electron probe microanalysis, scanning electron microscopy, and X-ray diffraction. The solubilities of Mo in the βTiMn, TiMn2, TiMn3 and TiMn4 phases of the Ti-Mn system were measured. A three-phase region and seven two-phase regions were experimentally determined. No ternary compounds were found. Based on the experimental data and the thermodynamic descriptions of the three binary sub-systems available in the literature, a set of thermodynamic parameters of the Ti-Mn-Mo ternary system was obtained. The calculated isothermal sections and vertical sections agree well with the experimental results. The calculated liquidus projection and invariant reaction scheme of the Ti-Mn-Mo ternary system are also presented. The present work can provide essential experimental and thermodynamic data for the design of biocompatible medical titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Biesiekierski, J. Wang, M.A.H. Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1661–1669.

    Article  Google Scholar 

  2. Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Materials, 2014, 7(3), p 1709–1800.

    Article  ADS  Google Scholar 

  3. Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui, and H. Toda, Corrosion Resistance and Biocompatibility of Ti–Ta Alloys for Biomedical Applications, Mater. Sci. Eng. A, 2005, 398(1), p 28–36.

    Article  Google Scholar 

  4. M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1), p 231–236.

    Article  Google Scholar 

  5. M. Abdel-Hady Gepreel, and M. Niinomi, Biocompatibility of Ti-Alloys for Long-Term Implantation, J. Mech. Behav. Biomed. Mater., 2013, 20, p 407–415.

    Article  Google Scholar 

  6. P.J. Bania, Beta Titanium Alloys and Their Role in the Titanium Industry, JOM, 1994, 46(7), p 16–19.

    Article  Google Scholar 

  7. P. Chui, Near β-Type Zr-Nb-Ti Biomedical Alloys with High Strength and Low Modulus, Vacuum, 2017, 143, p 54–58.

    Article  ADS  Google Scholar 

  8. W. Guo, M.Z. Quadir, S. Moricca, T. Eddows, and M. Ferry, Microstructural Evolution and Final Properties of a Cold-Swaged Multifunctional Ti–Nb–Ta–Zr–O Alloy Produced by a Powder Metallurgy Route, Mater. Sci. Eng. A, 2013, 575, p 206–216.

    Article  Google Scholar 

  9. Y.L. Hao, S.J. Li, S.Y. Sun, and R. Yang, Effect of Zr and Sn on Young’s Modulus and Superelasticity of Ti–Nb-based Alloys, Mater. Sci. Eng. A, 2006, 441(1), p 112–118.

    Article  Google Scholar 

  10. M. Niinomi, Y. Liu, M. Nakai, H. Liu, and H. Li, Biomedical Titanium Alloys with Young’s Moduli Close to That of Cortical Bone, Regener. Biomater., 2016, 3(3), p 173–185.

    Article  Google Scholar 

  11. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Design and Mechanical Properties of New Beta Type Titanium Alloys for Implant Materials, Mater. Sci. Eng. A, 1998, 243(1–2), p 244–249.

    Article  Google Scholar 

  12. L. Zhao, C. Cui, S. Liu, and Z. Zhe, Design and Research on Properties of New Type Metastable Beta-Titanium Alloys for Biomedical Applications Based on the D-Electron Alloy Design Method, Rare Met. Mater. Eng., 2008, 37(1), p 108–111.

    Google Scholar 

  13. M. Niinomi, M. Nakai, and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8(11), p 3888–3903.

    Article  Google Scholar 

  14. P.F. Santos, M. Niinomi, K. Cho, M. Nakai, H. Liu, N. Ohtsu, M. Hirano, M. Ikeda, and T. Narushima, Microstructures, Mechanical Properties and Cytotoxicity of Low Cost Beta Ti-Mn Alloys for Biomedical Applications, Acta Biomater., 2015, 26, p 366–376.

    Article  Google Scholar 

  15. P.F. Santos, M. Niinomi, H. Liu, K. Cho, M. Nakai, Y. Itoh, T. Narushima, and M. Ikeda, Fabrication of Low-Cost Beta-Type Ti-Mn Alloys for Biomedical Applications by Metal Injection Molding Process and Their Mechanical Properties, J. Mech. Behav. Biomed. Mater., 2016, 59, p 497–507.

    Article  Google Scholar 

  16. K. Cho, M. Niinomi, M. Nakai, H. Liu, P.F. Santos, Y. Itoh, M. Ikeda, and T. Narushima, Improvement in Mechanical Strength of Low-Cost β-Type Ti-Mn Alloys Fabricated by Metal Injection Molding Through Cold Rolling, J. Alloy. Compd., 2016, 664, p 272–283.

    Article  Google Scholar 

  17. Y. Alshammari, F. Yang, and L. Bolzoni, Mechanical Properties and Microstructure of Ti-Mn Alloys Produced via Powder Metallurgy for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2019, 91, p 391–397.

    Article  Google Scholar 

  18. J.E.G. González, and J.C. Mirza-Rosca, Study of the Corrosion Behavior of Titanium and some of its Alloys for Biomedical and Dental Implant Applications, J. Electroanal. Chem., 1999, 471(2), p 109–115.

    Article  Google Scholar 

  19. P.F. Santos, M. Niinomi, H. Liu, K. Cho, M. Nakai, A. Trenggono, S. Champagne, H. Hermawan, and T. Narushima, Improvement of Microstructure, Mechanical and Corrosion Properties of Biomedical Ti-Mn Alloys by Mo Addition, Mater. Des., 2016, 110, p 414–424.

    Article  Google Scholar 

  20. P.F. Santos, M. Niinomi, K. Cho, H. Liu, M. Nakai, T. Narushima, K. Ueda, and Y. Itoh, Effects of Mo Addition on the Mechanical Properties and Microstructures of Ti-Mn Alloys Fabricated by Metal Injection Molding for Biomedical Applications, Mater. Trans., 2017, 58(2), p 271–279.

    Article  Google Scholar 

  21. M.L. Lourenço, F.M.L. Pontes, and C.R. Grandini, The Influence of Thermomechanical Treatments on the Structure, Microstructure, and Mechanical Properties of Ti-5Mn-Mo Alloys, Metals, 2022, 12(3), p 527.

    Article  Google Scholar 

  22. J.L. Murray, The Mn-Ti (Manganese-Titanium) System, Bull. Alloy Phase Diagr., 1981, 2(3), p 334–343.

    Article  MathSciNet  Google Scholar 

  23. N. Saunders, COST 507 (Concerted Action on Materials Sciences)-Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys, in I. Ansara, A.T. Dinsdale and M.H. Rand (eds.), European Commission, Directorate-General XII, Science, Research and Development, L-2920 Luxembourg (1998).

  24. L.Y. Chen, C.H. Li, K. Wang, H.Q. Dong, X.G. Lu, and W.Z. Ding, Thermodynamic Modeling of Ti-Cr-Mn Ternary System, Calphad, 2009, 33(4), p 658–663.

    Article  Google Scholar 

  25. A.U. Khan, P. Broz, M. Premovic, J. Pavlu, J. Vrestal, X. Yan, D. Maccio, A. Saccone, G. Giester, and P. Rogl, The Ti-Mn System Revisited: Experimental Investigation and Thermodynamic Modelling, Phys. Chem. Chem. Phys., 2016, 18(33), p 23326–23339.

    Article  Google Scholar 

  26. J.L. Murray, The Mo-Ti (Molybdenum-Titanium) System, Bull. Alloy Phase Diagr., 1981, 2(2), p 185–192.

    Article  MathSciNet  Google Scholar 

  27. J.H. Shim, C.S. Oh, and D.N. Lee, A Thermodynamic Evaluation of the Ti-Mo-C System, Metall. Mater. Trans. B, 1996, 27(6), p 955–966.

    Article  Google Scholar 

  28. H.J. Chung, J.H. Shim, and D. NyungLee, Thermodynamic Evaluation and Calculation of Phase Equilibria of the Ti-Mo-C-N Quaternary System, J. Alloy. Compd., 1999, 282(1), p 142–148.

    Article  Google Scholar 

  29. L. Brewer and R.H. Lamoreaux, in T. B. Massalski, Editor-in-Chief; H. Okamoto, P. R. Subramanian, L. Kacprzak (eds), Binary Alloy Phase Diagrams–Second Edition. ASM International, Materials Park, Ohio, USA. December 1990. 3589 pp., 3 vol.

  30. P. Franke, D. Neuschütz, Binary Systems. Part 4: Binary Systems from Mn-Mo to Y-Zr · Mn-Mo: Datasheet from Landolt-Börnstein - Group IV Physical Chemistry · Volume 19B4: "Binary Systems. Part 4: Binary Systems from Mn-Mo to Y-Zr" in SpringerMaterials (https://doi.org/10.1007/10757285_2), Springer-Verlag Berlin Heidelberg.

  31. J. Miettinen, V.V. Visuri, and T. Fabritius, Chromium-, Copper-, Molybdenum-, and Nickel-Containing Thermodynamic Descriptions of the Fe-Al-Cr-Cu-Mn-Mo-Ni-Si System for Modeling the Solidification of Steels, University of Oulu, Acta Univ. Oul. C, 2020, 758, p 2020.

    Google Scholar 

  32. R.P. Elliott, B.W. Levinger, and W. Rostoker, System Titanium-Manganese-Molybdenum, Trans. Am. Inst. Min. Met. Eng., 1954, 200, p 228–232.

    Google Scholar 

  33. N.V. Ageev, and Z.M. Smirnova, Conditions for the Stabilisation of the Beta Phase in Ti-Mo-Mn alloys, Zhur. Neorg. Khim., 1959, 4, p 1100.

    Google Scholar 

  34. C. Li, H. Guo, L. Zheng, J. Yang, L. Ye, L. Liu, and L. Zhang, Phase Equilibria of the Ti-Nb-Mn Ternary System at 1173K, 1273K and 1373K, Processes, 2023, 11, p 424.

    Article  Google Scholar 

  35. T. Hu, X.M. Huang, J.H. Li, J. Zhang, G.M. Cai, and Z.P. Jin, Experimental Investigation and Thermodynamic Calculation of Ti-Hf-Mn System, Calphad, 2020, 70, 101776.

    Article  Google Scholar 

  36. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15(4), p 317–425.

    Article  Google Scholar 

  37. O. Redlich, and A.T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40(2), p 345–348.

    Article  Google Scholar 

  38. M. Hillert, Empirical Methods of Predicting and Representing Thermodynamic Properties of Ternary Solution Phases, Calphad, 1980, 4(1), p 1–12.

    Article  Google Scholar 

  39. M. Hillert, and L.I. Staffansson, The Regular Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand., 1970, 24, p 3618–3626.

    Article  Google Scholar 

  40. J. Liu, X. Yang, C. Li, X. Wang, K. Su, X. Li, and M. Tang, Phase Relationships in the Ho-Mn-Ti Ternary System at 773K, J. Alloy. Compd., 2009, 476(1), p 238–240.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Guangdong Major Project of Basic and Applied Basic Research (No. 2020B0301030006), the National Natural Science Foundation of China (Grant number 51831007), the Shenzhen Science and Technology Program (Grant No. SGDX20210823104002016), and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515120071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wu, L., Du, J. et al. Experimental Investigation and Thermodynamic Assessment of Phase Equilibria at the Ti-Mn side in the Ti-Mn-Mo Ternary System. J. Phase Equilib. Diffus. 45, 56–74 (2024). https://doi.org/10.1007/s11669-024-01083-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-024-01083-1

Keywords

Navigation