Skip to main content
Log in

Phase Equilibria of the Co-Cu-Mo System at 900 and 1100 °C

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The phase equilibria of the Co-Cu-Mo ternary system at 900 and 1100 °C have been studied by using x-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS). Three and five three-phase regions have been confirmed in the system at 900 and 1100 °C, respectively. No ternary compound has been found in these two isothermal sections. At 900 °C, the maximum solubilities of Co and Cu in the μ phase are 56.5 and 4.4 at.%, respectively. As the temperature rises to 1100 °C, their solubilities decrease slightly. Moreover, with the temperature increases from 900 to 1100° C, in the αCo phase, the solubility of Mo increases from 6.5 to 11.9 at.% and the solubility of Cu increases from 8.3 to 12.1 at.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.V. Aydinyan, H.V. Kirakosyan, and S.L. Kharatyan, Cu-Mo Composite Powders Obtained by Combustion–Coreduction Process, Int. J. Refract. Met. Hard Mater., 2016, 54, p 455-463

    Article  Google Scholar 

  2. A.V. Egorov et al., Properties of Porous Tungsten-Copper and Molybdenum-Copper Pseudoalloys, Sov. Powder Metall. Met. Ceram., 1987, 26(2), p 137-140

    Google Scholar 

  3. A.G. Dirks and J.J. Broek, Metastable Solid Solutions in Vapor Deposited Cu-Cr, Cu-Mo and Cu-W Thin Films, J. Vac. Sci. Technol., 1985, 3(6), p 2618-2623

    Article  ADS  Google Scholar 

  4. X. Wang, L. Hu, H. Wang, and E. Wang, Microstructure and Properties of Mo-50% Cu Alloy by Mechanical Milling and Pressure-Assisted Solid State Sintering, Rare Metal Mater. Eng., 2011, 40(5), p 902-905

    Google Scholar 

  5. B. Li, H. Jin, F. Ding, L. Bai, and F. Yuan, Fabrication of Homogeneous Mo-Cu Composites Using Spherical Molybdenum Powders Prepared by Thermal Plasma Spheroidization Process, 2018, Int. J. Refract. Met. Hard Mater., 2018, 73, p 13-21

    Article  Google Scholar 

  6. G.-Q. Chen, G.-H. Wu, D.-Z. Zhu, Q. Zhang, and L.-T. Jiang, Microstructure and Thermal and Electric Conductivities of High Dense Mo/Cu Composites, Trans. Nonferr. Metal Soc., 2005, 15(3), p 110-114

    Google Scholar 

  7. D. Wang, X. Dong, P. Zhou, A. Sun, and B. Duan, The Sintering Behavior of Ultra-Fine Mo-Cu Composite Powders and the Sintering Properties of the Composite Compacts, Int. J. Refract. Met. Hard Mater., 2014, 42, p 240-245

    Article  Google Scholar 

  8. J.T. Yao, C.J. Li, Y. Li, B. Chen, and H.B. Huo, Relationships Between the Properties and Microstructure of Mo-Cu Composites Prepared by Infiltrating Copper into Flamesprayed Porous Mo skeleton, Mater. Des., 2015, 88, p 774-780

    Article  Google Scholar 

  9. J. Cheng, P. Song, Y. Gong, Y. Cai, and Y. Xia, Fabrication and Characterization of W-15Cu Composite Powders by a Novel Mechano-Chemical Process, Mater. Sci. Eng. A, 2008, 488(1-2), p 453-457

    Article  Google Scholar 

  10. F.A. da Costa, A.G.P. da Silva, and U. Umbelino Gomes, The Influence of the Dispersion Technique on the Characteristics of the W-Cu Powders and on the Sintering Behavior, Powder Technol., 2003, 134(1-2), p 123-132

    Article  Google Scholar 

  11. J.L. Johnson, Activated Liquid Phase Sintering of W-Cu and Mo-Cu, Int. J. Refract. Met. Hard Mater., 2015, 53, p 80-86

    Article  Google Scholar 

  12. S.S. Ryu, Y.D. Kim, and I.H. Moon, Dilatometric Analysis on the Sintering Behavior of Nanocrystalline W-Cu Prepared by Mechanical Alloying, J. Alloys Compd., 2002, 335(1-2), p 233-240

    Article  Google Scholar 

  13. X. Zhou, Y. Dong, X. Hua, Rafi-ud-din, and Z. Ye, Effect of Fe on the Sintering and Thermal Properties of Mo-Cu Composites, Mater. Des., 2010, 31(3), p 1603-1606

    Article  Google Scholar 

  14. A. Sun, Z. Wu, X. Dong, B. Duan, and D. Wang, Effects of Ag Addition on Electrical and Thermal Properties of Mo-Cu Composites, J. Alloys Compd., 2016, 657, p 8-11

    Article  Google Scholar 

  15. S. Guo, Q. Kang, C. Cai, and X. Qu, Mechanical Properties and Expansion Coefficient of Mo-Cu Composites with Different Ni Contents, Rare Met., 2012, 31, p 368-371

    Article  Google Scholar 

  16. T.J. Quinn and W. Hume-Rothery, The Equilibrium Diagram of the System Molybdenum-Cobalt, J. Less Common Met., 1963, 5, p 314-324

    Article  Google Scholar 

  17. C.P. Heijwegen and G.D. Rieck, Determination of the Phase Diagram of the Mo-Co System Using Diffusion Couples, J. Less-Common Met., 1974, 34, p 309-314

    Article  Google Scholar 

  18. A. Davydov and U.R. Kattner, Revised Thermodynamic Description for the Co-Mo System, J. Phase Equilib. Diffus., 2003, 24(3), p 209-211

    Article  Google Scholar 

  19. C. Lehmer, Electrical Melting of Sulfidized Ores and Smelting Product Directly into Metals, Metallurgie, 1906, 3, p 596-602

    Google Scholar 

  20. E. Siedschlag, Chromium-Molybdenum and Chro-mium-Molybdenum-Copper Alloys, Z. Anorg. Chem., 1923, 131, p 191-202

    Article  Google Scholar 

  21. L. Dreibholz, Investigations of Binary and Ternary Molybdenum Alloys, Z. Phys. Chem., 1924, 108, p 1-50

    Article  Google Scholar 

  22. M.L. Baskin, A.V. Savin, V.I. Tumanov, and Y.A. Eiduk, Mutual Solubility of Copper and Molybdenum and Properties of Cu-Mo Alloys, Izv. Akad. Nauk SSSR Otdel. Tekh. Nauk Met. Toplivo., 1961, 4, p 111-114

    Google Scholar 

  23. L. Brewer and R.H. Lamoreaux, Molybdenum: Physieo-Chemical Properties of Its Compounds and Alloys, Atom. Energ. Rev., 1980, 119(7), p 236-238

    Google Scholar 

  24. R. Sahmen, Metallographic Announcements from the Institute for Inorganic Chemistry of the University of Gottingen LVIII, Concerning the Alloys of Copper with Cobalt, Iron, Manganese and Magnesium, Z. Anorg. Chem., 1908, 57, p 1-33

    Article  Google Scholar 

  25. U. Hashimoto, The Equilibrium Diagram of the Co-Cu System, J. Jpn. Inst. Met., 1937, 1(1), p 19-26

    Article  Google Scholar 

  26. M. Hasebe and T. Nishizawa, Calculation of Phase Diagrams of the Iron-Copper and Cobalt-Copper Systems, Calphad, 1980, 4(2), p 83-100

    Article  Google Scholar 

  27. P. Taskinen, Activities and Thermodynamic Properties of Molten Co-Cu Alloys, Z. Metallkd., 1982, 73, p 445

    Google Scholar 

Download references

Acknowledgments

This work is supported by national Natural Science Foundation of china (No. 51771160) and Scientific Research Fund of Hunan Provincial Science and Technology Department (No. 2018JJ4057, 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucheng Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yin, F., Hu, J. et al. Phase Equilibria of the Co-Cu-Mo System at 900 and 1100 °C. J. Phase Equilib. Diffus. 40, 275–284 (2019). https://doi.org/10.1007/s11669-019-00723-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-019-00723-1

Keywords

Navigation