Skip to main content
Log in

Ocean of Data: Integrating First-Principles Calculations and CALPHAD Modeling with Machine Learning

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Thermodynamics is a science concerning the state of a system, whether it is stable, metastable or unstable, when interacting with the surroundings. Computational thermodynamics enables quantitative calculations of thermodynamic properties as a function of both external conditions and internal configurations, in terms of first and second derivatives of energy with respect to either potentials or molar quantities. Thermodynamic modeling based on the CALPHAD method enables the thermodynamics beyond stable states and is the foundation of Materials Genome and materials design. In last several decades, first-principles calculations based on density functional theory have provided invaluable thermochemical data to improve the robustness of CALPHAD modeling. Today with ever increasing computing power and large amount of data repositories online, it calls for a new paradigm for CALPHAD modeling approach incorporating machine learning to create a sustainable ecosystem for the ocean of data and for emergent behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis, Cambridge University Press, Cambridge, 2008

    MATH  Google Scholar 

  2. Z.K. Liu and Y. Wang, Computational Thermodynamics of Materials, Cambridge University Press, Cambridge, 2016

    Book  Google Scholar 

  3. J.W. Gibbs, The Collected Works of J. Willard Gibbs, Yale University Press, New Haven, 1948

    MATH  Google Scholar 

  4. I. Prigogine, Thermodynamics of Irreversible Processes, Interscience, New York, 1961

    MATH  Google Scholar 

  5. D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures, Wiley, Hoboken, 1998

    MATH  Google Scholar 

  6. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams. With Special Reference to Refractory Metals, Academic Press, London, 1970

    Google Scholar 

  7. N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Vol 1, Pergamon, New York, 1998

    Google Scholar 

  8. H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The CALPHAD Method, Vol 131, Cambridge University Press, Cambridge, 2007

    Book  Google Scholar 

  9. G.B. Olson, Computational Design of Hierarchically Structured Materials, Science, 1997, 277, p 1237–1242

    Article  Google Scholar 

  10. L. Kaufman, Computational Thermodynamics and Materials Design, CALPHAD, 2001, 25, p 141–161

    Article  Google Scholar 

  11. G.B. Olson and C.J. Kuehmann, Materials Genomics: From CALPHAD to Flight, Scr. Mater., 2014, 70, p 25–30

    Article  Google Scholar 

  12. L. Kaufman and J. Agren, CALPHAD, First and Second Generation: Birth of the Materials Genome, Scr. Mater., 2014, 70, p 3–6

    Article  Google Scholar 

  13. Human Genome Project (2012), Available at https://www.genome.gov/10001772/all-about-the--human-genome-project-hgp/. Accessed 26 June 2018

  14. The Term of Materials Genome Coined in 2002 and Trademarked in 2004/2012 (78512752/85271561) by MaterialsGenome, Inc. http://www.materialsgenome.com, Available at http://tess2.uspto.gov. Accessed 26 June 2018

  15. 刘梓葵. 关于材料基因组的基本观点及展望. Chin. Sci. Bull., 2013, 58, p 3618–3622

  16. Z.K. Liu, Perspective on Materials Genome®, Chin. Sci. Bull., 2014, 59, p 1619–1623

    Article  Google Scholar 

  17. National Science and Technology Council. Materials Genome Initiative for Global Competitiveness (2011), Available at https://www.mgi.gov/sites/default/files/documents/materials_genome_initiative-final.pdf. Accessed 22 Mar 2017

  18. P.J. Spencer, Computational Thermochemistry: From its Early CALPHAD Days to a Cost-Effective Role in Materials Development and Processing, CALPHAD, 2001, 25, p 163

    Article  Google Scholar 

  19. P.J. Spencer, A brief history of CALPHAD, CALPHAD, 2008, 32, p 1–8

    Article  Google Scholar 

  20. L. Kaufman, The Lattice Stability of the Transition Metal, in Phase Stability in Metals and Alloys, eds. P.S. Rudman, J.S. Stringer, R.I. Jaffee) (McGraw-Hill, New York, 1967), pp. 125–150

    Google Scholar 

  21. H.L. Skriver, Crystal-Structure from One-Electron Theory, Phys. Rev. B, 1985, 31, p 1909–1923

    Article  ADS  Google Scholar 

  22. G. Grimvall, Reconciling Ab Initio and Semiempirical Approaches to Lattice Stabilities, Phys. Chem. Chem. Phys., 1998, 102, p 1083–1087

    Google Scholar 

  23. J. Hafner and F. Sommer, Ab-Initio Pseudopotential Calculations of Structure and Stability of Binary-Alloys and Intermetallic Compounds, CALPHAD, 1977, 1, p 325–340

    Article  Google Scholar 

  24. G. Kresse and J. Hafner, Ab-Initio Molecular-Dynamics for Open-Shell Transition-Metals, Phys. Rev. B, 1993, 48, p 13115–13118

    Article  ADS  Google Scholar 

  25. J. Hafner, Ab-Initio Simulations of Materials Using VASP: Density-Functional Theory and Beyond, J. Comput. Chem., 2008, 29, p 2044–2078

    Article  Google Scholar 

  26. Z.K. Liu, First-Principles Calculations and CALPHAD Modeling of Thermodynamics, J. Phase Equilib. Diffus., 2009, 30, p 517–534

    Article  Google Scholar 

  27. Z.K. Liu, X.Y. Li, and Q.M. Zhang, Maximizing the Number of Coexisting Phases Near Invariant Critical Points for Giant Electrocaloric and Electromechanical Responses in Ferroelectrics, Appl. Phys. Lett., 2012, 101, p 82904

    Article  Google Scholar 

  28. A.V. Evteev, E.V. Levchenko, I.V. Belova, R. Kozubski, Z.K. Liu, and G.E. Murch, Thermotransport in Binary System: Case Study on Ni50Al50 Melt, Philos. Mag., 2014, 94, p 3574–3602

    Article  ADS  Google Scholar 

  29. T. Ahmed, E.V. Levchenko, A.V. Evteev, Z.K. Liu, W.Y. Wang, R. Kozubski, I.V. Belova, and G. Murch, Molecular Dynamics Prediction of the Influence of Composition on Thermotransport in Ni-Al Melts, Diffus. Found., 2017, 12, p 93–110

    Article  Google Scholar 

  30. Y. Wang, Y.-J. Hu, S.-L. Shang, S.A. Firdosy, K.E. Star, J.-P. Fleurial, V.A. Ravi, L.-Q. Chen, and Z.-K Liu, A First-Principles Approach to Predict Seebeck Coefficients: Application to La3-xTe4 (2017). http://arxiv.org/abs/1708.00949

  31. Y. Wang, Y.-J. Hu, S.-L. Shang, B.-C. Zhou, Z.-K. Liu, and L.-Q. Chen, First-Principles Thermodynamic Theory of Seebeck Coefficients (2017). http://arxiv.org/abs/1708.01591

  32. Z.K. Liu, Y. Wang, and S.L. Shang, Thermal Expansion Anomaly Regulated by Entropy, Sci. Rep., 2014, 4, p 7043

    Article  Google Scholar 

  33. Z.K. Liu, S.L. Shang, and Y. Wang, Fundamentals of Thermal Expansion and Thermal Contraction, Materials, 2017, 10, p 410

    Article  ADS  Google Scholar 

  34. M. Hillert, A Solid-Solution Model for Inhomogeneous Systems, Acta Metall., 1961, 9, p 525–535

    Article  Google Scholar 

  35. J.W. Cahn, On Spinodal Decomposition, Acta Metall., 1961, 9, p 795–801

    Article  Google Scholar 

  36. J. Zhou, J. Zhong, L. Chen, L. Zhang, Y. Du, Z.-K. Liu, and P.H. Mayrhofer, Phase Equilibria, Thermodynamics and Microstructure Simulation of Metastable Spinodal Decomposition in c-Ti1−xAlxN Coatings, CALPHAD, 2017, 56, p 92–101

    Article  Google Scholar 

  37. M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, and K.A. Lyssenko, Density Functional Theory is Straying from the Path Toward the Exact Functional, Science, 2017, 355, p 49–52

    Article  ADS  Google Scholar 

  38. Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen, and Z.K. Liu, Ab Initio Lattice Stability in Comparison with CALPHAD Lattice Stability, CALPHAD, 2004, 28, p 79–90

    Article  Google Scholar 

  39. C. Jiang, C. Wolverton, J. Sofo, L.Q. Chen, and Z.K. Liu, First-Principles Study of Binary bcc Alloys Using Special Quasirandom Structures, Phys. Rev. B, 2004, 69, p 214202

    Article  ADS  Google Scholar 

  40. A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu, Efficient Stochastic Generation of Special Quasirandom Structures, CALPHAD, 2013, 42, p 13–18

    Article  Google Scholar 

  41. A.J. Wang, L.C. Zhou, Y. Kong, Y. Du, Z.K. Liu, S.L. Shang, Y.F. Ouyang, J. Wang, L.J. Zhang, and J.C. Wang, First-Principles Study of Binary Special Quasirandom Structures for the Al-Cu, Al-Si, Cu-Si, and Mg-Si Systems, CALPHAD, 2009, 33, p 769–773

    Article  Google Scholar 

  42. Y. Wang, Z.K. Liu, and L.Q. Chen, Thermodynamic Properties of Al, Ni, NiAl, and Ni3Al from First-Principles Calculations, Acta Mater., 2004, 52, p 2665–2671

    Article  Google Scholar 

  43. Y. Wang, S.L. Shang, H. Fang, Z.K. Liu, and L.Q. Chen, First-Principles Calculations of Lattice Dynamics and Thermal Properties of Polar Solids, NPJ Comput. Mater., 2016, 2, p 16006

    Article  ADS  Google Scholar 

  44. S.L. Shang, Y. Wang, D. Kim, and Z.K. Liu, First-Principles Thermodynamics from Phonon and Debye mOdel: Application to Ni and Ni3Al, Comput. Mater. Sci., 2010, 47, p 1040–1048

    Article  Google Scholar 

  45. D. Kim, S.L. Shang, and Z.K. Liu, Effects of Alloying Elements on Thermal Expansions of Gamma-Ni and Gamma′-Ni3Al by First-Principles Calculations, Acta Mater., 2012, 60, p 1846–1856

    Article  Google Scholar 

  46. M. Mantina, in A First-Principles Methodology for Diffusion Coefficients in Metals and Dilute Alloys. Department of Materials Science and Engineering (The Pennsylvania State University, 2008).

  47. B.-C. Zhou, S.-L. Shang, Y. Wang, and Z.-K. Liu, Diffusion Coefficients of Alloying Elements in Dilute Mg Alloys: A Comprehensive First-Principles Study, Acta Mater., 2016, 103, p 573–586

    Article  Google Scholar 

  48. Y. Wang, L.Q. Chen, Z.K. Liu, and S.N. Mathaudhu, First-Principles Calculations of Twin-Boundary and Stacking-Fault Energies in Magnesium, Scr. Mater., 2010, 62, p 646–649

    Article  Google Scholar 

  49. S.L. Shang, W.Y. Wang, Y. Wang, Y. Du, J.X. Zhang, A.D. Patel, and Z.K. Liu, Temperature-Dependent Ideal Strength and Stacking Fault Energy of fcc Ni: A First-Principles Study of Shear Deformation, J. Phys.: Condens. Matter, 2012, 24, p 155402

    ADS  Google Scholar 

  50. V.R. Manga, J.E. Saal, Y. Wang, V.H. Crespi, and Z.K. Liu, Magnetic Perturbation and Associated Energies of the Antiphase Boundaries in Ordered Ni3Al, J. Appl. Phys., 2010, 108, p 103509

    Article  ADS  Google Scholar 

  51. W.Y. Wang, F. Xue, Y. Zhang, S.-L. Shang, Y. Wang, K.A. Darling, L.J. Kecskes, J. Li, X. Hui, Q. Feng, and Z.-K. Liu, Atomic and Electronic Basis for Solutes Strengthened (010) Anti-Phase Boundary of L12Co3(Al, TM): A Comprehensive First-Principles Study, Acta Mater., 2018, 145, p 1008–1014

    Google Scholar 

  52. H.Z. Fang, Y. Wang, S.L. Shang, P.D. Jablonski, and Z.K. Liu, First-Principles Calculations of Interfacial and Segregation Energies in Alpha-Cr2O3, J. Phys.: Condens. Matter, 2012, 24, p 225001

    ADS  Google Scholar 

  53. W.Y. Wang, S.L. Shang, Y. Wang, Y.J. Hu, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, X.D. Hui, and Z.K. Liu, Lattice Distortion Induced Anomalous Ferromagnetism and Electronic Structure in FCC Fe and Fe-TM (TM = Cr, Ni, Ta and Zr) Alloys, Mater. Chem. Phys., 2015, 162, p 748–756

    Article  Google Scholar 

  54. S.L. Shang, Y. Wang, and Z.K. Liu, First-Principles Elastic Constants of Alpha- and Theta-Al2O3, Appl. Phys. Lett., 2007, 90, p 101909

    Article  ADS  Google Scholar 

  55. S.-L.L. Shang, H. Zhang, Y. Wang, and Z.-K.K. Liu, Temperature-Dependent Elastic Stiffness Constants of Alpha- and Theta-Al2O3 from First-Principles Calculations, J. Phys.: Condens. Matter, 2010, 22, p 375403

    Google Scholar 

  56. Y.-J. Hu, M.R. Fellinger, B.G. Bulter, Y. Wang, K.A. Darling, L.J. Kecskes, D.R. Trinkle, and Z.K. Liu, Solute-Induced Solid-Solution Softening and Hardening in bcc Tungsten, Acta Mater., 2017, 141, p 304–316

    Article  Google Scholar 

  57. C.L. Zacherl, Ph.D. Dissertation, A Computational Investigation of the Effect of Alloying Elements on the Thermodynamic and Diffusion Properties of fcc Ni Alloys, with Application to the Creep Rate of Dilute Ni-X Alloys. (The Pennsylvania State University, 2012)

  58. C.Z. Hargather, S.L. Shang, and Z.K. Liu, A Comprehensive First-Principles Study of Solute Elements in Dilute Ni Alloys: Diffusion Coefficients and Their Implications to Tailor Creep Rate. Acta Mater. (2018) (under revi)

  59. Y. Wang, J.J. Wang, W.Y. Wang, Z.G. Mei, S.L. Shang, L.Q. Chen, and Z.K. Liu, A Mixed-Space Approach to First-Principles Calculations of Phonon Frequencies for Polar Materials, J. Phys.: Condens. Matter, 2010, 22, p 202201

    ADS  Google Scholar 

  60. Y. Wang, S.L. Shang, Z.K. Liu, and L.Q. Chen, Mixed-Space Approach for Calculation of Vibration-Induced Dipole–Dipole Interactions, Phys. Rev. B, 2012, 85, p 224303

    Article  ADS  Google Scholar 

  61. Y. Wang, W.Y. Wang, L.-Q. Chen, and Z.-K. Liu, Bonding Charge Density from Atomic Perturbations, J. Comput. Chem., 2015, 36, p 1008–1014

    Article  Google Scholar 

  62. V. Ozolins, First-Principles Calculations of Free Energies of Unstable Phases: The Case of fcc W, Phys. Rev. Lett., 2009, 102, p 65702

    Article  ADS  Google Scholar 

  63. Z.G. Mei, in First-Principles Thermodynamics of Phase Transition: From Metal to Oxide. Ph.D. (The Pennsylvania State University, 2011)

  64. M.W. Chase, NIST-JANAF Thermochemical Tables 2 Volume-Set (Journal of Physical and Chemical Reference Data Monographs). (American Chemical Society Washington, DC, 1998)

  65. A. van de Walle, Q. Hong, S. Kadkhodaei, and R. Sun, The Free Energy of Mechanically Unstable Phases, Nat. Commun., 2015, 6, p 8559

    Article  Google Scholar 

  66. A. van de Walle, Invited Paper: Reconciling SGTE and Ab Initio Enthalpies of the Elements, CALPHAD, 2018, 60, p 1–6

    Article  Google Scholar 

  67. M. Hillert, The Compound Energy Formalism, J. Alloys Compd., 2001, 320, p 161–176

    Article  Google Scholar 

  68. R. Car and M. Parrinello, Unified Approach for Molecular-Dynamics and Density-Functional Theory, Phys. Rev. Lett., 1985, 55, p 2471–2474

    Article  ADS  Google Scholar 

  69. X. Hui, H.Z. Fang, G.L. Chen, S.L. Shang, Y. Wang, and Z.K. Liu, Icosahedral Ordering in Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass, Appl. Phys. Lett., 2008, 92, p 201913

    Article  ADS  Google Scholar 

  70. X. Hui, H.Z. Fang, G.L. Chen, S.L. Shang, Y. Wang, J.Y. Qin, and Z.K. Liu, Atomic Structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass Alloy, Acta Mater., 2009, 57, p 376–391

    Article  Google Scholar 

  71. W.Y. Wang, S.L. Shang, Y. Wang, F. Han, K.A. Darling, Y. Wu, X. Xie, O.N. Senkov, J. Li, X.D. Hui, K.A. Dahmen, P.K. Liaw, L.J. Kecskes, and Z.K. Liu, Atomic and Electronic Basis for the Serrations of Refractory High-Entropy Alloys, NPJ Comput. Mater., 2017, 3, p 23

    Article  ADS  Google Scholar 

  72. Y. Wang, H.Z. Fang, C.L. Zacherl, Z.G. Mei, S.L. Shang, L.Q. Chen, P.D. Jablonski, and Z.K. Liu, First-Principles Lattice Dynamics, Thermodynamics, and Elasticity of Cr2O3, Surf. Sci., 2012, 606, p 1422–1425

    Article  ADS  Google Scholar 

  73. Z.F. Zheng, H.Z. Fang, F. Yang, Z.K. Liu, and Y. Wang, Amorphous LiLaTiO3 as Solid Electrolyte Material, J. Electrochem. Soc., 2014, 161, p A473–A479

    Article  Google Scholar 

  74. H. Zhang, S.L. Shang, W.Y. Wang, Y. Wang, X.D. Hui, L.Q. Chen, and Z.K. Liu, Structure and Energetics of Ni from Ab Initio Molecular Dynamics Calculations, Comput. Mater. Sci., 2014, 89, p 242–246

    Article  Google Scholar 

  75. J. Han, W.Y. Wang, C. Wang, Y. Wang, X. Liu, and Z.-K. Liu, Accurate Determination of Thermodynamic Properties For Liquid Alloys Based on Ab Initio molecular Dynamics Simulation, Fluid Phase Equilib., 2013, 360, p 44–53

    Article  Google Scholar 

  76. L.G. Wang, A. van de Walle, and D. Alfè, Melting Temperature of Tungsten from Two Ab Initio Approaches, Phys. Rev. B, 2011, 84, p 92102

    Article  ADS  Google Scholar 

  77. A. van de Walle, Melting Mechanisms. Simulations Provide a Rare Look at Real Melting, Science, 2014, 346, p 704–705

    Article  ADS  Google Scholar 

  78. Q.-J. Hong and A. van de Walle, A User Guide for SLUSCHI: Solid and Liquid in Ultra Small Coexistence with Hovering Interfaces, CALPHAD, 2016, 52, p 88–97

    Article  Google Scholar 

  79. H.Z. Fang, Y. Wang, S.L. Shang, and Z.K. Liu, Nature of Ferroelectric–Paraelectric Phase Transition and Origin of Negative Thermal Expansion in PbTiO3, Phys. Rev. B, 2015, 91, p 24104

    Article  ADS  Google Scholar 

  80. A. Jain, O. Shyue Ping, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation, Appl. Mater., 2013, 1, p 11002

    Article  Google Scholar 

  81. Materials Project, Available at http://materialsproject.org/

  82. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD), JOM, 2013, 65, p 1501–1509

    Article  Google Scholar 

  83. OQMD: An Open Quantum Materials Database. Available at http://oqmd.org. Accessed 26 June 2018

  84. AFLOW: Automatic Flow for Materials Discovery, http://www.aflowlib.org, Available at http://www.aflowlib.org. Accessed 26 June 2018

  85. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder, Python Materials Genomics (Pymatgen): A Robust, Open-Source Python Library for Materials Analysis, Comput. Mater. Sci., 2013, 68, p 314–319

    Article  Google Scholar 

  86. G. Bergerhoff, R. Hundt, R. Sievers, and I.D. Brown, The Inorganic Crystal Structure Data Base, J. Chem. Inf. Model., 1983, 23, p 66–69

    Article  Google Scholar 

  87. A.O. Lyakhov, A.R. Oganov, H.T. Stokes, and Q. Zhu, New Developments in Evolutionary Structure Prediction Algorithm USPEX, Comput. Phys. Commun., 2013, 184, p 1172–1182

    Article  ADS  Google Scholar 

  88. C.W. Glass, A.R. Oganov, and N. Hansen, USPEX: Evolutionary Crystal Structure Prediction, Comput. Phys. Commun., 2006, 175, p 713–720

    Article  ADS  Google Scholar 

  89. National Research Council, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (2008)

  90. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. Available at https://www.sciencedirect.com/journal/calphad. Accessed 26 June 2018

  91. A. van de Walle, C. Nataraj, and Z.-K. Liu, The Thermodynamic Database Database, CALPHAD, 2018, 61, p 173–178

    Article  Google Scholar 

  92. B. Sundman, U.R. Kattner, M. Palumbo, and S.G. Fries, OpenCalphad-A Free Thermodynamic Software, Integr. Mater. Manuf. Innov., 2015, 4, p 1

    Article  Google Scholar 

  93. B. Sundman, Open CALPHAD, Available at http://www.opencalphad.com. Accessed 26 June 2018

  94. C.E. Campbell, U.R. Kattner, and Z.-K.K. Liu, The Development of Phase-Based Property Data Using the CALPHAD Method and Infrastructure Needs, Integr. Mater. Manuf. Innov., 2014, 3, p 12

    Article  Google Scholar 

  95. C.E. Campbell, U.R. Kattner, and Z.K. Liu, File and Data Repositories for Next Generation CALPHAD, Scr. Mater., 2014, 70, p 7–11

    Article  Google Scholar 

  96. Z.K. Liu, H. Zhang, S. Ganeshan, Y. Wang, and S.N. Mathaudhu, Computational Modeling of Effects of Alloying Elements on Elastic Coefficients, Scr. Mater., 2010, 63, p 686–691

    Article  Google Scholar 

  97. S.L. Shang, Y. Wang, and Z.K. Liu,  ESPEI: Extensible, Self-optimizing Phase Equilibrium Infrastructure for Magnesium Alloys, in Magnesium Technology 2010, (eds. S.R. Agnew, N.R. Neelameggham, E.A. Nyberg, W.H. Sillekens) (The Minerals, Metals and Materials Society (TMS), Pittsburgh, PA, 2010), pp. 617–622

  98. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, B. Sundman, L.H. Hoglund, P.F. Shi, B. Sundman, L. Höglund, P.F. Shi, and B. Sundman, THERMO-CALC & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26, p 273–312

    Article  Google Scholar 

  99. R.A. Otis and Z.K. Liu, Pycalphad: CALPHAD-Based Computational Thermodynamics in Python, J. Open Res. Softw., 2017, 5, p 1

    Article  Google Scholar 

  100. R.A. Otis and Z.K. Liu, Pycalphad. Available at http://pycalphad.org. Accessed 12 Apr 2018

  101. R.A. Otis and Z.-K. Liu, High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME, JOM, 2017, 69, p 886–892

    Article  ADS  Google Scholar 

  102. Z.K. Liu, R.A. Otis, and B. Bocklund, ESPEI: Extensible Self-optimizing Phase Equilibria Infrastructure. Available at http://espei.org. Accessed 11 Apr 2018

  103. H. Bozdogan, Model Selection and Akaike’s Information Criterion (AIC): The General Theory and its Analytical Extensions, Psychometrika, 1987, 52, p 345–370

    Article  MathSciNet  Google Scholar 

  104. H. Akaike, Selected Papers of Hirotugu Akaike. (Springer New York, 1998). https://doi.org/10.1007/978-1-4612-1694-0_15. Accessed 26 June 2018

    Google Scholar 

  105. ESPEI: Cu-Mg Example. Available at https://github.com/PhasesResearchLab/ESPEI-datasets/tree/master/CU-MG. Accessed 26 June 2018

  106. W.K. Hastings, Monte Carlo Sampling Methods Using Markov Chains and Their Applications, Biometrika, 1970, 57, p 97–109

    Article  MathSciNet  Google Scholar 

  107. J. Goodman and J. Weare, Ensemble Samplers with Affine Invariance, Commun. Appl. Math. Comput. Sci., 2010, 5, p 65–80

    Article  MathSciNet  Google Scholar 

  108. D. Foreman-Mackey, D.W. Hogg, D. Lang, and J. Goodman, Emcee: The MCMC Hammer, Publ. Astron. Soc. Pac., 2013, 125, p 306–312

    Article  ADS  Google Scholar 

  109. S. Curtarolo, D. Morgan, and G. Ceder, Accuracy of Ab Initio Methods in Predicting the Crystal Structures of Metals: A Review of 80 Binary Alloys, CALPHAD, 2005, 29, p 163–211

    Article  Google Scholar 

  110. W. Xiong and G.B. Olson, Cybermaterials: Materials by Design and Accelerated Insertion of Materials, NPJ Comput. Mater., 2016, 2, p 15009

    Article  ADS  Google Scholar 

  111. K. Mathew, J. Montoya, A. Faghnaninia, S. Dwarakanath, M. Aykol, H. Tang, I. Chu, T. Smidt, B. Bocklund, Z.-K. Liu, J. Neaton, S.P. Ong, K. Persson, and J. Anubhav, Atomate: A High-Level Interface to Generate, Execute, and Analyze Computational Materials Science Workfows, Comput. Mater. Sci., 2017, 139, p 140–152

    Article  Google Scholar 

  112. J.C. Zhao, Combinatorial Approaches as Effective Tools in the Study of Phase Diagrams and Composition–Structure–Property Relationships, Prog. Mater Sci., 2006, 51, p 557–631

    Article  Google Scholar 

  113. N. Sicron, B. Ravel, Y. Yacoby, E.A. Stern, F. Dogan, and J.J. Rehr, Nature of the Ferroelectric Phase-Transition in PbTiO3, Phys. Rev. B, 1994, 50, p 13168–13180

    Article  ADS  Google Scholar 

  114. G. Shirane and S. Hoshino, On the Phase Transition in Lead Titanate, J. Phys. Soc. Jpn., 1951, 6, p 265

    Article  ADS  Google Scholar 

  115. Z.-K. Liu, Y. Wang, and S.-L. Shang, Origin of Negative Thermal Expansion Phenomenon in Solids, Scr. Mater., 2011, 66, p 130

    Article  Google Scholar 

Download references

Acknowledgments

The research results reported in the paper are accumulated from the author’ publications over the years, as listed in the cited references with financial supports acknowledged in them, including the National Science Foundation (NSF), the Department of Energy, Army Research Lab, Office of Naval Research, Wright Patterson AirForce Base, NASA Jet Propulsion Laboratory, and the National Institute of Standards and Technology, in addition to a range of national laboratories and companies that supported the NSF Center for Computational Materials Design, and the LION clusters at the Pennsylvania State University, the resources of NERSC supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the resources of XSEDE supported by NSF with Grant ACI-1053575. Particularly, pycalphad and ESPEI have been supported by a NASA Space Technology Research Fellowship under Grant No. NNX14AL43H and NSF Research Traineeship Program (CoMET: Computational Materials Education) under Grant No. 1449785. The author would like to thanks Dr. Richard Otis and Mr. Brandon Bocklund for comments of the manuscript and Patricia Lee Craig at Penn State for drawing Fig. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Kui Liu.

Additional information

This invited article is part of a special issue of the Journal of Phase Equilibria and Diffusion in honor of Prof. Zhanpeng Jin’s 80th birthday. The special issue was organized by Prof. Ji-Cheng (JC) Zhao, The Ohio State University; Dr. Qing Chen, Thermo-Calc Software AB; and Prof. Yong Du, Central South University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ZK. Ocean of Data: Integrating First-Principles Calculations and CALPHAD Modeling with Machine Learning. J. Phase Equilib. Diffus. 39, 635–649 (2018). https://doi.org/10.1007/s11669-018-0654-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0654-z

Keywords

Navigation