Skip to main content
Log in

High-Throughput Determination of Interdiffusion Coefficients for Co-Cr-Fe-Mn-Ni High-Entropy Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In this report, a combination of the diffusion multiple technique and the recently developed pragmatic numerical inverse method was employed for a high-throughput determination of interdiffusivity matrices in Co-Cr-FeMn-Ni high-entropy alloys (HEAs). Firstly, one face-centered cubic (fcc) quinary Co-Cr-Fe-Mn-Ni diffusion multiple at 1373 K was carefully prepared by means of the hot-pressing technique. Based on the composition profiles measured by the field emission electron probe micro analysis (FE-EPMA), the composition-dependent interdiffusivity matrices in quinary Co-Cr-Fe-Mn-Ni system at 1373 K were then efficiently determined using the pragmatic numerical inverse method. The determined interdiffusivities show good agreement with the limited results available in the literature. Moreover, the further comparison with the interdiffusivities in the lower-order systems indicates the sluggish diffusion effect in Co-Cr-Fe-Mn-Ni HEAs, which is however not observed in tracer diffusivities. In order for the convenience in further analysis, a generalized transformation relation among interdiffusivities with different dependent components in multicomponent systems was finally derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk, High-Entropy Alloys in Hexagonal Close-Packed Structure, Metall. Mater. Trans. A, 2016, 47, p 3322-3332

    Article  Google Scholar 

  2. J. Morral, Skepticism, Science and High Entropy Alloys, J. Phase Equilib. Diff., 2015, 36, p 305

    Article  Google Scholar 

  3. D.B. Miraclea and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448-511

    Article  Google Scholar 

  4. K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish Diffusion in Co-Cr-Fe-Mn-Ni High-entropy Alloys, Acta Mater., 2013, 61, p 4887-4897

    Article  Google Scholar 

  5. F. Zhang and U. Kattner, CALPHAD and the High Entropy Alloy, J. Phase Equilib. Diff., 2015, 36, p 1-2

    Article  Google Scholar 

  6. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Mechanical Properties, Microstructure and Thermal Stability of a Nanocrystalline CoCrFeMnNi High-Entropy Alloy After Severe Plastic Deformation, Acta Mater., 2015, 96, p 258-268

    Article  Google Scholar 

  7. A. Chyrkin, A. Epishin, R. Pillai, T. Link, G. Noize, and W.J. Quadakkers, Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple, J. Phase Equilib. Diff., 2016, 37, p 201-211

    Article  Google Scholar 

  8. F. Faupel, W. Frank, M.-P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H.R. Schober, S.K. Sharma, and H. Teichler, Diffusion in Metallic Glasses and Supercooled Melts, Rev. Mod. Phys., 2003, 75, p 237-280

    Article  ADS  Google Scholar 

  9. R.F. Sekerka, G.B. McFadden, and W.J. Boettinger, Analytical Derivation of the Sauer-Freise Flux Equation for Multicomponent Multiphase Diffusion Couples with Variable Partial Molar Volumes, J. Phase Equilib. Diffus., 2016, 37, p 640-650

    Article  Google Scholar 

  10. W. Chen, L. Zhang, Y. Du, C. Tang, and B. Huang, A Pragmatic Method to Determine the Composition-Dependent Interdiffusivities in Ternary Systems by Using a Single Diffusion Couple, Scripta Mater., 2014, 90–91, p 53-56

    Article  Google Scholar 

  11. W. Chen, J. Zhong, and L. Zhang, An Augmented Numerical Inverse Method for Determining the Composition-Dependent Interdiffusivities in Alloy Systems by Using a Single Diffusion Couple, MRS Comm., 2016, 6, p 295-300

    Article  Google Scholar 

  12. H. Xu, W. Chen, L. Zhang, Y. Du, and C. Tang, High-throughput Determination of the Composition-Dependent Interdiffusivities in Cu-rich Fcc Cu-Ag-Sn Alloys at 1073 K, J. Alloys Compd., 2015, 644, p 687-693

    Article  Google Scholar 

  13. J. Chen, L. Zhang, J. Zhong, W. Chen, and Y. Du, High-throughput Measurement of the Composition-Dependent Interdiffusivity Matrices in Ni-rich Fcc Ni-Al-Ta Alloys at Elevated Temperatures, J. Alloys Compd., 2016, 688, p 320-328

    Article  Google Scholar 

  14. S. Deng, W. Chen, J. Zhong, L. Zhang, Y. Du, and L. Chen, Diffusion Study in Bcc_A2 Fe-Mn-Si System: Experimental Measurement and CALPHAD Assessment, CALPHAD, 2017, 56, p 230-240

    Article  Google Scholar 

  15. J.-C. Zhao, M.R. Jackson, L.A. Peluso, and L.N. Brewer, A Diffusion-Multiple Approach for Mapping Phase Diagrams, Hardness, and Elastic Modulus, JOM, 2002, 54, p 42-45

    Article  Google Scholar 

  16. J.-C. Zhao, X. Zheng, and D.G. Cahill, High-Throughput Diffusion Multiples, Mater. Today, 2005, 8, p 28-37

    Article  Google Scholar 

  17. J.-C. Zhao, Reliability of the Diffusion-Multiple Approach for Phase Diagram Mapping, J. Mater. Sci., 2004, 39, p 3913-3925

    Article  ADS  Google Scholar 

  18. J.-C. Zhao, Combinatorial Approaches as Effective Tools in the Study of Phase Diagrams and Composition-Structure-Property Relationships, Prog. Mater Sci., 2006, 51, p 557-631

    Article  Google Scholar 

  19. K. Kulkarni and G.P.S. Chauhan, Investigations of Quaternary Interdiffusion in a Constituent System of High Entropy Alloys, AIP Adv., 2015, 5, p 097162

    Article  ADS  Google Scholar 

  20. Y.W. Cui, M. Jiang, I. Ohnuma, K. Oikawa, R. Kainuma, and K. Ishida, Computational Study of Atomic Mobility in Co-Fe-Ni Ternary Fcc Alloys, J. Phase Equilib. Diffus., 2008, 29, p 312-321

    Article  Google Scholar 

  21. M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, and S.V. Divinski, Ni Tracer Diffusion in CoCrFeNi and CoCrFeMnNi High Entropy Alloys, J. Alloys Compd., 2016, 688, p 994-1001

    Article  Google Scholar 

  22. B. Million, J. Růžičková, J. Velíšek, and J. Vřešťál, Diffusion Processes in the Fe-Ni System, Mater. Sci. Eng., 1981, 50, p 43-52

    Article  Google Scholar 

  23. S.J. Rothman, L.J. Nowicki, and G.E. Murch, Self-Diffusion in Austenitic Fe-Cr-Ni Alloys, J. Phys. F: Met. Phys., 1980, 10, p 383-398

    Article  ADS  Google Scholar 

  24. B. Million and J. Kučera, Concentration Dependence of Nickel Diffusion in Nickel-Cobalt Alloys, Czech. J. Phys. B, 1971, 21, p 161-171

    Article  ADS  Google Scholar 

  25. J.R. Manning, Diffusion and the Kirkendall Shift in Binary Alloys, Acta Metall., 1967, 15, p 817-826

    Article  Google Scholar 

  26. W. Chen, L. Zhang, Y. Du, and B. Huang, Viscosity and Diffusivity in Melts: From Unary to Multicomponent Systems, Philos. Mag., 2014, 94, p 1552-1577

    Article  ADS  Google Scholar 

  27. W. Zhang, Y. Du, W. Chen, Y. Peng, P. Zhou, S. Wang, G. Wen, and W. Xie, CSUDDCC1—A Diffusion Database for Multicomponent Cemented Carbides, Int. J. Refract. Met. Hard Mater., 2014, 43, p 164-180

    Article  Google Scholar 

  28. F. Sauer and V.Z. Freise, Diffusion in Binären Gemischen mit Volumenänderung, Z. Elektrochem., 1962, 66, p 353-362

    Google Scholar 

  29. A. Ben Abdellah, J.G. Gasser, K. Bouziane, B. Grosdidier, and M. Busaidi, Experimental Procedure to Determine the Interdiffusion Coefficient of Miscibility Gap Liquid Alloys: Case of GaPb System, Phys. Rev. B, 2007, 76, p 174203

    Article  ADS  Google Scholar 

  30. J. Lechelle, S. Noyau, L. Aufore, A. Arredondo and E. Audubert, Volume Interdiffusion Coefficient and Uncertainty Assessment for Polycrystalline Materials. Diffusion-fundamentals.org, 2012, 17, p 1–39.

  31. N.G. Jones, R. Izzo, P.M. Mignanelli, K.A. Christofidou, and H.J. Stone, Phase Evolution in an Al0.5CrFeCoNiCu High Entropy Alloy, Intermetallics, 2016, 71, p 43-50

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant No. 51474239), the National Key Research and Development Program of China (Grant No. 2016YFB0301101) and the Hunan Provincial Natural Science Foundation for Youth of China (Grant No. 2015JJ3146) is acknowledged. Weimin Chen acknowledges the financial support from Guangdong Provincial Natural Science Foundation for Doctoral Research Project, the Innovation Foundation of Jinan University (Grant No. 21617340) and the Scientific Research Funds for the Talents of Jinan University, Guangzhou, China. Lijun Zhang acknowledges the project supported by State Key Laboratory of Powder Metallurgy Foundation, Central South University, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang.

Electronic supplementary material

Appendix

Appendix

In an N-component system, the interdiffusion flux of a component i under constant molar volume can be expressed by Fick’s first law,

$$\tilde{J}_{i} = - \sum\limits_{j = 1}^{N - 1} {\left( {\tilde{D}_{ij}^{N} \cdot \frac{{\partial c_{j} }}{\partial x}} \right)} \quad i = 1, \ldots ,N - 1$$
(9)

Then, one can obtain

$$\tilde{J}_{i} = - \sum\limits_{j = 1}^{N - 2} {\left( {\tilde{D}_{ij}^{N} \cdot \frac{{\partial c_{j} }}{\partial x}} \right)} - \tilde{D}_{iN - 1}^{N} \cdot \frac{{\partial c_{N - 1} }}{\partial x}\quad i = 1, \ldots ,N - 2$$
(10)
$$\tilde{J}_{N - 1} = - \sum\limits_{j = 1}^{N - 2} {\left( {\tilde{D}_{N - 1j}^{N} \cdot \frac{{\partial c_{j} }}{\partial x}} \right)} - \tilde{D}_{N - 1N - 1}^{N} \cdot \frac{{\partial c_{N - 1} }}{\partial x}$$
(11)

In fact, Eq 9-11 are presented when the component N is treated as the dependent component. If the component N − 1 is selected as the dependent component, one can have

$$\tilde{J}_{i} = - \sum\limits_{j = 1}^{N - 2} {\left( {\tilde{D}_{ij}^{N - 1} \cdot \frac{{\partial c_{j} }}{\partial x}} \right)} - \tilde{D}_{iN}^{N - 1} \cdot \frac{{\partial c_{N} }}{\partial x}\quad i = 1, \ldots ,N - 2$$
(12)
$$\begin{aligned} \tilde{J}_{N - 1} & = 0 - \tilde{J}_{N} - \sum\limits_{i = 1}^{N - 2} {\tilde{J}_{i} } \\ & { = }\sum\limits_{j = 1}^{N - 2} {\left( {\tilde{D}_{Nj}^{N - 1} \cdot \frac{{\partial c_{j} }}{\partial x}} \right)} + \tilde{D}_{NN}^{N - 1} \cdot \frac{{\partial c_{N} }}{\partial x} - \sum\limits_{i = 1}^{N - 2} {\tilde{J}_{i} } \\ \end{aligned}$$
(13)

Considered the relation (\(\frac{{\partial c_{N} }}{\partial x} = - \sum\limits_{j = 1}^{N - 1} {(\frac{{\partial c_{j} }}{\partial x})}\)), Eq 12 and 13 can be revised as,

$$\tilde{J}_{i} = - \sum\limits_{j = 1}^{N - 2} {\left[ {(\tilde{D}_{ij}^{N - 1} - \tilde{D}_{iN}^{N - 1} ) \cdot \frac{{\partial c_{j} }}{\partial x}} \right]} - \left( { - \tilde{D}_{iN}^{N - 1} } \right) \cdot \frac{{\partial c_{N - 1} }}{\partial x}\quad i = 1, \ldots ,N - 2$$
(14)
$$\tilde{J}_{N - 1} = - \sum\limits_{j = 1}^{N - 2} {\left[ {\left( {\tilde{D}_{NN}^{N - 1} - \tilde{D}_{Nj}^{N - 1} } \right) \cdot \frac{{\partial c_{j} }}{\partial x}} \right]} - \tilde{D}_{NN}^{N - 1} \cdot \frac{{\partial c_{N - 1} }}{\partial x} - \sum\limits_{i = 1}^{N - 2} {\tilde{J}_{i} }$$
(15)

A direct comparison between Eq A6 with Eq A4 leads to,

$$\begin{aligned} \tilde{D}_{ij}^{N - 1} = \tilde{D}_{ij}^{N} - \tilde{D}_{iN - 1}^{N} \quad i,j = 1, \ldots ,N - 2 \hfill \\ \tilde{D}_{iN}^{N - 1} = - \tilde{D}_{iN - 1}^{N} \quad \quad i = 1, \ldots ,N - 2 \hfill \\ \end{aligned}$$
(16)

By substituting Eq 14 into Eq 15, one can obtain

$$\begin{aligned} \tilde{J}_{N - 1} & = - \sum\limits_{j = 1}^{N - 2} {\left[ {\left( {\tilde{D}_{NN}^{N - 1} - \tilde{D}_{Nj}^{N - 1} } \right) \cdot \frac{{\partial c_{j} }}{\partial x}} \right]} - \tilde{D}_{NN}^{N - 1} \cdot \frac{{\partial c_{N - 1} }}{\partial x} - \sum\limits_{i = 1}^{N - 2} {\left\{ {\sum\limits_{j = 1}^{N - 2} {\left[ {\left( {\tilde{D}_{iN}^{N - 1} - \tilde{D}_{ij}^{N - 1} } \right) \cdot \frac{{\partial c_{j} }}{\partial x}} \right]} + \tilde{D}_{iN}^{N - 1} \cdot \frac{{\partial c_{N - 1} }}{\partial x}} \right\}} \\ & = - \sum\limits_{j = 1}^{N - 2} {\left\{ {\left[ {\left( {\tilde{D}_{NN}^{N - 1} - \tilde{D}_{Nj}^{N - 1} } \right) + \sum\limits_{i = 1}^{N - 2} {\left( {\tilde{D}_{iN}^{N - 1} - \tilde{D}} \right)_{ij}^{N - 1} } } \right] \cdot \frac{{\partial c_{j} }}{\partial x}} \right\}} - \left( {\tilde{D}_{NN}^{N - 1} + \sum\limits_{i = 1}^{N - 2} {\tilde{D}_{iN}^{N - 1} } } \right) \cdot \frac{{\partial c_{N - 1} }}{\partial x} \\ \end{aligned}$$
(17)

A direct comparison between Eq 17 with Eq 11 leads to,

$$\begin{aligned} \tilde{D}_{NN}^{N - 1} & = \tilde{D}_{N - 1N - 1}^{N} - \sum\limits_{i = 1}^{N - 2} {\tilde{D}_{iN}^{N - 1} } = \sum\limits_{i = 1}^{N - 1} {\tilde{D}_{iN - 1}^{N} } \\ \tilde{D}_{Nj}^{N - 1} & = \tilde{D}_{NN}^{N - 1} + \sum\limits_{i = 1}^{N - 2} {\left( {\tilde{D}_{iN}^{N - 1} - \tilde{D}_{ij}^{N - 1} } \right)} - \tilde{D}_{N - 1j}^{N} \\ & = \sum\limits_{i = 1}^{N - 1} {\tilde{D}_{iN - 1}^{N} } - \sum\limits_{i = 1}^{N - 2} {\tilde{D}_{ij}^{N} } - \tilde{D}_{N - 1j}^{N} \\ & = \sum\limits_{i = 1}^{N - 1} {\left( {\tilde{D}_{iN - 1}^{N} - \tilde{D}_{ij}^{N} } \right)} \, j = 1, \ldots ,N - 2 \\ \end{aligned}$$
(18)

According to the above mathematical derivations, a generalized transformation relation in an N-component system is achieved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhang, L. High-Throughput Determination of Interdiffusion Coefficients for Co-Cr-Fe-Mn-Ni High-Entropy Alloys. J. Phase Equilib. Diffus. 38, 457–465 (2017). https://doi.org/10.1007/s11669-017-0569-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0569-0

Keywords

Navigation