Skip to main content
Log in

Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Thermally sprayed coatings are essentially layered materials, and lamellar interfaces are of great importance to coatings’ performances. In the present study, to investigate the microstructures and defect features at thermally sprayed coating interfaces, homoepitaxial 8 mol.% yttria-stabilized zirconia (YSZ) and heteroepitaxial lanthanum zirconia (LZ) films were fabricated. The epitaxial interfaces were examined by high-resolution transmission electron microscope (HR-TEM) in detail. As a result, we report, for the first time, an anomalous incommensurate homoepitaxial growth with mismatch-induced dislocations in thermally sprayed YSZ splats to create a homointerface. We also find the anomalous heteroepitaxial growth in thermally sprayed LZ splats. The mechanism of the anomalous incommensurate growth was analyzed in detail. Essentially, it is a pseudo-heteroepitaxy because of the lattice mismatch between the film and the locally heated substrate, as the locally heated substrate is significantly strained by its cold surroundings. Moreover, the super-high-density dislocations were found in the interfacial region, which resulted from sufficient thermal fluctuations and extremely rapid cooling rates. Both the anomalous lattice mismatch and super-high-density dislocations lead to weak interfaces and violent cracking in thermally sprayed coatings. These were also the essential differences between the conventional and the present epitaxy by thermal spray technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Materials Science—Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  Google Scholar 

  2. N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15(8), p 804-809

    Article  Google Scholar 

  3. Y.Z. Xing, C.J. Li, C.X. Li, and G.J. Yang, Influence of Through-Lamella Grain Growth on Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia as an Electrolyte in Solid Oxide Fuel Cells, J. Power Sources, 2008, 176(1), p 31-38

    Article  Google Scholar 

  4. G. Bolelli, V. Cannillo, L. Lusvarghi, and T. Manfredini, Wear Behaviour of Thermally Sprayed Ceramic Oxide Coatings, Wear, 2006, 261(11–12), p 1298-1315

    Article  Google Scholar 

  5. S. Wilson, Thermally Sprayed Abradable Coating Technology for Sealing in Gas Turbines. In: 6th International Conference on the Future of Gas Turbine Technology (2012)

  6. E. Irissou, A. Dadouche, and R.S. Lima, Tribological Characterization of Plasma-Sprayed CoNiCrAlY-BN Abradable Coatings, J. Therm. Spray Technol., 2014, 23(1–2), p 252-261

    Article  Google Scholar 

  7. D. Sporer, M. Dorfman, L. Xie, A. Refke, I. Giovannetti, and M. Giannozzi, Processing and Properties of Advanced Ceramic Abradable Coatings, Therm. Spray Glob. Coat. Solut., 2007, 2007, p 14-16

    Google Scholar 

  8. H. Dong, G.J. Yang, H.N. Cai, C.X. Li, and C.J. Li, Propagation Feature of Cracks in Plasma-Sprayed YSZ Coatings Under Gradient Thermal Cycling, Ceram. Int., 2015, 41(3), p 3481-3489

    Article  Google Scholar 

  9. C.J. Li, Y. Li, G.J. Yang, and C.X. Li, Evolution of Lamellar Interface Cracks During Isothermal Cyclic Test of Plasma-Sprayed 8YSZ Coating with a Columnar-Structured YSZ Interlayer, J. Therm. Spray Technol., 2013, 22(8), p 1374-1382

    Article  Google Scholar 

  10. S. Ahmadian and E.H. Jordan, Explanation of the Effect of Rapid Cycling on Oxidation, Rumpling, Microcracking and Lifetime of Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2014, 244, p 109-116

    Article  Google Scholar 

  11. B. Cheng, Y.M. Zhang, N. Yang, M. Zhang, L. Chen, G.J. Yang, C.X. Li, and C.J. Li, Sintering-Induced Delamination of Thermal Barrier Coatings by Gradient thermal Cyclic Test, J. Am. Ceram. Soc., 2017, doi:10.1111/jace.14713

    Google Scholar 

  12. J.P. Schaffer, The Science and Design of Engineering Materials, 2nd ed., Higher Education Press, Beijing, 2003

    Google Scholar 

  13. T. Chraska and A.H. King, Effect of Different Substrate Conditions upon Interface with Plasma Sprayed Zirconia—A TEM Study, Surf. Coat. Technol., 2002, 157(2–3), p 238-246

    Article  Google Scholar 

  14. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part I. First Splat Solidification, Thin Solid Films, 2001, 397(1–2), p 30-39

    Article  Google Scholar 

  15. T. Chraska and A.H. King, Transmission Electron Microscopy Study of Rapid Solidification of Plasma Sprayed Zirconia—Part II. Interfaces and Subsequent Splat Solidification, Thin Solid Films, 2001, 397(1–2), p 40-48

    Article  Google Scholar 

  16. E.J. Yang, X.T. Luo, G.J. Yang, C.X. Li, and C.J. Li, A TEM Study of the Microstructure of Plasma-Sprayed YSZ Near Inter-Splat Interfaces, J. Therm. Spray Technol., 2015, 24(6), p 907-914

    Article  Google Scholar 

  17. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  Google Scholar 

  18. S. Kuroda, T. Fukushima, and S. Kitahara, Significance of Quenching Stress in the Cohesion and Adhesion of Thermally Sprayed Coatings, J. Therm. Spray Technol., 1992, 1(4), p 325-332

    Article  Google Scholar 

  19. S. Kuroda, T. Dendo, and S. Kitahara, Quenching Stress in Plasma-Sprayed Coatings and its Correlation with the Deposit Microstructure, J. Therm. Spray Technol., 1995, 4(1), p 75-84

    Article  Google Scholar 

  20. S.B. Wang, L. Pan, J.J. Song, W.B. Mi, J.J. Zou, L. Wang, and X.W. Zhang, Titanium-Defected Undoped Anatase TiO2 with p-Type Conductivity, Room-Temperature Ferromagnetism, and Remarkable Photocatalytic Performance, J. Am. Chem. Soc., 2015, 137(8), p 2975-2983

    Article  Google Scholar 

  21. F. Zuo, L. Wang, T. Wu, Z.Y. Zhang, D. Borchardt, and P.Y. Feng, Self-doped Ti3+ Enhanced Photocatalyst for Hydrogen Production Under Visible Light, J. Am. Chem. Soc., 2010, 132(34), p 11856-11857

    Article  Google Scholar 

  22. X. Zhu, K.L. Mills, P.R. Peters, J.H. Bahng, E.H. Liu, J. Shim, K. Naruse, M.E. Csete, M.D. Thouless, and S. Takayama, Fabrication of Reconfigurable Protein Matrices by Cracking, Nat. Mater., 2005, 4(5), p 403-406

    Article  Google Scholar 

  23. D. Huh, K.L. Mills, X.Y. Zhu, M.A. Burns, M.D. Thouless, and S.Takayama, Tuneable Elastomeric Nanochannels for Nanofluidic Manipulation, Nat. Mater., 2007, 6(6), p 424-428

    Article  Google Scholar 

  24. B.C. Kim, C. Moraes, J. Huang, M.D. Thouless, and S. Takayama, Fracture-Based Micro- and Nanofabrication for Biological Applications, Biomater. Sci., 2014, 2(3), p 288-296

    Article  Google Scholar 

  25. P. Kim, M. Abkarian, and H.A. Stone, Hierarchical Folding of Elastic Membranes Under Biaxial Compressive Stress, Nat. Mater., 2011, 10(12), p 952-957

    Article  Google Scholar 

  26. Y. Gao, Q.C. Liu, and B.X. Xu, Lattice Mismatch Dominant Yet Mechanically Tunable Thermal Conductivity in Bilayer Heterostructures, ACS Nano, 2016, 10(5), p 5431-5439

    Article  Google Scholar 

  27. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, and J. Santamaria, Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2: Y2O3/SrTiO3 Heterostructures, Science, 2008, 321(5889), p 676-680

    Article  Google Scholar 

  28. R. Adelung, O.C. Aktas, J. Franc, A. Biswas, R. Kunz, M. Elbahri, J. Kanzow, U. Schurmann, and F. Faupel, Strain-Controlled Growth of Nanowires within Thin-Film Cracks, Nat. Mater., 2004, 3(6), p 375-379

    Article  Google Scholar 

  29. M. De Volder, S. Park, S. Tawfick, and A.J. Hart, Strain-Engineered Manufacturing of Freeform Carbon Nanotube Microstructures, Nat. Commun., 2014, doi:10.1038/ncomms5512

    Google Scholar 

  30. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd ed., Oxford University Press Inc., New York, 2001

    Google Scholar 

  31. B.A. Joyce, The Epitaxy of Silicon on Alumina—Structural Effects, Philos. Mag., 1966, 14, p 31-46

    Article  Google Scholar 

  32. H.M. Manasevit, A Survey of the Heteroepitaxial Growth of Semiconductor Films on Insulating Substrates, J. Cryst. Growth, 1974, 22(2), p 125-148

    Article  Google Scholar 

  33. W.I. Wang, Molecular-Beam Epitaxial-Growth and Material Properties of GaAs and AlGaAs on Si(100), Appl. Phys. Lett., 1984, 44(12), p 1149-1151

    Article  Google Scholar 

  34. W.T. Masselink, T. Henderson, J. Klem, R. Fischer, P. Pearah, H. Morkoç, M. Hafich, P.D. Wang, and G.Y. Robinson, Optical Properties of GaAs on (100) Si Using Molecular Beam Epitaxy, Appl. Phys. Lett., 1984, 45(12), p 1309-1311

    Article  Google Scholar 

  35. Z. Lin, A. Yin, J. Mao, Y. Xia, N. Kempf, Q. He, Y. Wang, C.-Y. Chen, Y. Zhang, and V. Ozolins, Scalable Solution-Phase Epitaxial Growth of Symmetry-Mismatched Heterostructures on Two-Dimensional Crystal Soft Template, Sci. Adv., 2016, 2(10), p 1-9

    Article  Google Scholar 

  36. L. Chen, G.J. Yang, C.X. Li, and C.J. Li, Hierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic Coatings, J. Therm. Spray Technol., 2016, 25(5), p 959-970

    Article  Google Scholar 

  37. L. Chen, G.-J. Yang, C.-X. Li, and C.-J. Li, Edge Effect on Crack Patterns in Thermally Sprayed Ceramic Splats, J. Therm. Spray Technol., 2016, doi:10.1007/s11666-016-0505-6

    Google Scholar 

  38. S. Kaiser, H. Preis, W. Gebhardt, O. Ambacher, H. Angerer, M. Stutzmann, A. Rosenauer, and D. Gerthsen, Quantitative Transmission Electron Microscopy Investigation of the Relaxation by Misfit Dislocations Confined at the Interface of GaN/Al2O3(0001), Jpn. J. Appl. Phys., 1998, 37(1), p 84-89

    Article  Google Scholar 

  39. J.H. Joo, K.J. Greenberg, M. Baram, D.R. Clarke, and E.L. Hu, Aqueous Epitaxial Growth of ZnO on Single Crystalline Au Microplates, Cryst. Growth Des., 2013, 13(3), p 986-991

    Article  Google Scholar 

  40. S.P.T. Goodier, S.P. Timoshenko, and J.N. Goodier, Theory of Elasticity, MacGraw Hill International Book, New York, 1982

    Google Scholar 

  41. C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, J.C. Krapez, and M. Vardelle, Temperature Evolution of Plasma-Sprayed Niobium Particles Impacting on a Substrate, Surf. Coat. Technol., 1991, 46(2), p 173-187

    Article  Google Scholar 

  42. H. Jones, Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization, J. Phys. D Appl. Phys., 1971, 4(11), p 1657-1660

    Article  Google Scholar 

  43. X. Wu and G.C. Weatherly, The Surface Topography of Cracks in Strained In0.72Ga0.28P Films, Philos. Mag. Lett., 2000, 80(8), p 535-541

    Article  Google Scholar 

  44. Y. Li, G.C. Weatherlyy, and M. Niewczas, TEM Studies of Stress Relaxation in GaAsN and GaP Thin Films, Philos. Mag., 2005, 85(26–27), p 3073-3090

    Article  Google Scholar 

  45. X. Wu and G.C. Weatherly, The First Stage of Stress Relaxation in Tensile Strained In1-xGaxAs1-yPy Films, Philos. Mag. A, 2001, 81(6), p 1489-1506

    Article  Google Scholar 

  46. R.V. Kukta and L.B. Freund, Minimum Energy Configuration of Epitaxial Material Clusters on a Lattice-Mismatched Substrate, J. Mech. Phys. Solids, 1997, 45(11), p 1835-1860

    Article  Google Scholar 

  47. X.H. Wu, Strain relaxation in indium gallium arsenide phosphide films on indium phosphide substrates, Ph. D. Thesis, McMaster University, 2000

  48. L.B. Freund, The Mechanics of Dislocations in Strained-Layer Semiconductor-Materials, Adv. Appl. Mech., 1994, 30, p 1-66

    Google Scholar 

  49. J.W. Matthews, A.E. Blakeslee, and S. Mader, Use of Misfit Strain to Remove Dislocations from Epitaxial Thin-Films, Thin Solid Films, 1976, 33(2), p 253-266

    Article  Google Scholar 

  50. B.C.D. Cooman and C.B. Carter, The Accommodation of Misfit at 100 Heterojunctions in III–V Compound Semiconductors by Gliding Dissociated Dislocations, Acta Metall., 1989, 37(10), p 2765-2777

    Article  Google Scholar 

  51. A.F. Schwartzman and R. Sinclair, Metastable and Equilibrium Defect Structure of II–VI/GaAs Interfaces, J. Electron. Mater., 1991, 20(7), p 805-814

    Article  Google Scholar 

  52. X. Wu and G.C. Weatherly, Cracking Phenomena in In(0.25)Ga(0.75)As Films on InP Substrates, Acta Mater., 1999, 47(12), p 3383-3394

    Article  Google Scholar 

  53. R.T. Murray, C.J. Kiely, and M. Hopkinson, Crack Formation in III-V Epilayers Grown Under Tensile Strain on InP(001) Substrates, Philos. Mag. A, 1996, 74(2), p 383-393

    Article  Google Scholar 

  54. M.D. Thouless, E. Olsson, and A. Gupta, Cracking of Brittle Films on Elastic Substrates, Acta Metall. Mater., 1992, 40(6), p 1287-1292

    Article  Google Scholar 

  55. Y. Chen and J. Washburn, Structural Transition in Large-Lattice-Mismatch Heteroepitaxy, Phys. Rev. Lett., 1996, 77(19), p 4046-4049

    Article  Google Scholar 

  56. J. Tersoff and F.K. Legoues, Competing Relaxation Mechanisms in Strained Layers, Phys. Rev. Lett., 1994, 72(22), p 3570-3573

    Article  Google Scholar 

  57. X. Wu and G.C. Weatherly, Composition Modulations in Tensile Strained In1-xGaxAsyP1-y Films Grown on (100) InP Substrates, J. Cryst. Growth, 2001, 233(1–2), p 88-98

    Article  Google Scholar 

  58. S.V. Kamat and J.P. Hirth, Dislocation Injection in Strained Multilayer Structures, J. Appl. Phys., 1990, 67(11), p 6844-6850

    Article  Google Scholar 

  59. P.M.J. Maree, J.C. Barbour, J.F. Vanderveen, K.L. Kavanagh, C.W.T. Bullelieuwma, and M.P.A. Viegers, Generation of Misfit Dislocations in Semiconductors, J. Appl. Phys., 1987, 62(11), p 4413-4420

    Article  Google Scholar 

  60. J.P. Hirth, J. Lothe, and T. Mura, Theory of Dislocations, 2nd ed., John Wiley & Sons, New York, 1982

    Google Scholar 

  61. D.J. Eaglesham, E.P. Kvam, D.M. Maher, C.J. Humphreys, and J.C. Bean, Dislocation Nucleation Near the Critical Thickness in GeSi/Si Strained Layers, Philos. Mag. A, 1989, 59(59), p 1059-1073

    Article  Google Scholar 

  62. M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin, Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes, J. Therm. Spray Technol., 1995, 4(1), p 50-58

    Article  Google Scholar 

  63. S. Wooh, S. Lee, Y. Lee, J.H. Ryu, W.B. Lee, H. Yoon, and K. Char, Isolated Mesoporous Microstructures Prepared by Stress Localization-Induced Crack Manipulation, ACS Nano, 2016, 10(10), p 9259-9266

    Article  Google Scholar 

  64. R.M. Yu, X.F. Wang, W.B. Peng, W.Z. Wu, Y. Ding, S.T. Li, and Z.L. Wang, Piezotronic Effect in Strain-Gated Transistor of a-Axis GaN Nanobelt, ACS Nano, 2015, 9(10), p 9822-9829

    Article  Google Scholar 

  65. L. Oakes, R. Carter, T. Hanken, A.P. Cohn, K. Share, B. Schmidt, and C.L. Pint, Interface Strain in Vertically Stacked Two-Dimensional Heterostructured Carbon-MoS2 Nanosheets Controls Electrochemical Reactivity, Nat. Commun., 2016, doi:10.1038/ncomms11796

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Basic Research Program (Nos. 2013CB035701), the Fundamental Research Funds for the Central Universities and the National Program for Support of Top-notch Young Professionals. Authors would like to thank Engineer Chuan-sheng Ma for his help with manipulation of TITAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Jun Yang.

Appendix

Appendix

The macrostructure and FFT-IFFT processing of epitaxial film (see Fig. 8 and 9).

Fig. 8
figure 8

Low-magnification microstructures of (a, b) YSZ and (c, d) LZ splats at the deposition temperatures of (a, c) 300 and (b, d) 600 °C, respectively. The film/substrate interfaces are clearly distinguished. The thickness of YSZ splats was about 300-500 nm (a, b), and this was about 800-1000 nm for LZ splats (c, d)

Fig. 9
figure 9

FFT and IFFT processing for LZ splat deposited at 300 °C. (a) An original HR-TEM image; (b) FFT image of the region shown in (a); (c) only the spot with [220] direction [the red circle in (b)] was selected; (d) IFFT image of the region shown in (c) (Color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, GJ. Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats. J Therm Spray Tech 26, 1168–1182 (2017). https://doi.org/10.1007/s11666-017-0579-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0579-9

Keywords

Navigation