Skip to main content
Log in

Erosion Performance of Gadolinium Zirconate-Based Thermal Barrier Coatings Processed by Suspension Plasma Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

7-8 wt.% Yttria-stabilized zirconia (YSZ) is the standard thermal barrier coating (TBC) material used by the gas turbines industry due to its excellent thermal and thermo-mechanical properties up to 1200 °C. The need for improvement in gas turbine efficiency has led to an increase in the turbine inlet gas temperature. However, above 1200 °C, YSZ has issues such as poor sintering resistance, poor phase stability and susceptibility to calcium magnesium alumino silicates (CMAS) degradation. Gadolinium zirconate (GZ) is considered as one of the promising top coat candidates for TBC applications at high temperatures (>1200 °C) due to its low thermal conductivity, good sintering resistance and CMAS attack resistance. Single-layer 8YSZ, double-layer GZ/YSZ and triple-layer GZdense/GZ/YSZ TBCs were deposited by suspension plasma spray (SPS) process. Microstructural analysis was carried out by scanning electron microscopy (SEM). A columnar microstructure was observed in the single-, double- and triple-layer TBCs. Phase analysis of the as-sprayed TBCs was carried out using XRD (x-ray diffraction) where a tetragonal prime phase of zirconia in the single-layer YSZ TBC and a cubic defect fluorite phase of GZ in the double and triple-layer TBCs was observed. Porosity measurements of the as-sprayed TBCs were made by water intrusion method and image analysis method. The as-sprayed GZ-based multi-layered TBCs were subjected to erosion test at room temperature, and their erosion resistance was compared with single-layer 8YSZ. It was shown that the erosion resistance of 8YSZ single-layer TBC was higher than GZ-based multi-layered TBCs. Among the multi-layered TBCs, triple-layer TBC was slightly better than double layer in terms of erosion resistance. The eroded TBCs were cold-mounted and analyzed by SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42

    Article  Google Scholar 

  2. D. Stöver and C. Funke, Directions of the Development of Thermal Barrier Coatings in Energy Applications, J. Mater. Process. Technol., 1999, 92–93, p 195-202

    Article  Google Scholar 

  3. J.M. Drexler, C.-H. Chen, A.D. Gledhill, K. Shinoda, S. Sampath, and N.P. Padture, Plasma Sprayed Gadolinium Zirconate Thermal Barrier Coatings That are Resistant to Damage by Molten Ca–Mg–Al–Silicate Glass, Surf. Coat. Technol., 2012, 206(19–20), p 3911-3916

    Article  Google Scholar 

  4. A.D. Gledhill, K.M. Reddy, J.M. Drexler, K. Shinoda, S. Sampath, and N.P. Padture, Mitigation of Damage from Molten Fly Ash to Air-Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2011, 528(24), p 7214-7221

    Article  Google Scholar 

  5. L. Li, N. Hitchman, and J. Knapp, Failure of Thermal Barrier Coatings Subjected to CMAS Attack, J. Therm. Spray Technol., 2009, 19(1–2), p 148-155

    Google Scholar 

  6. A. Aygun, A.L. Vasiliev, N.P. Padture, and X. Ma, Novel Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits, Acta Mater., 2007, 55(20), p 6734-6745

    Article  Google Scholar 

  7. A. Cipitria, I.O. Golosnoy, and T.W. Clyne, A Sintering Model for Plasma-Sprayed Zirconia TBCs. Part I: Free-Standing Coatings, Acta Mater., 2009, 57(4), p 980-992

    Article  Google Scholar 

  8. S. Krämer, J. Yang, and C.G. Levi, Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts, J. Am. Ceram. Soc., 2008, 91(2), p 576-583

    Article  Google Scholar 

  9. S. Krämer, J. Yang, C.G. Levi, and C.A. Johnson, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO–MgO–Al2O3–SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89(10), p 3167-3175

    Article  Google Scholar 

  10. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205(4), p 938-942

    Article  Google Scholar 

  11. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  Google Scholar 

  12. S. Mahade, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Thermal Conductivity and Thermal Cyclic Fatigue of Multilayered Gd2Zr2O7/YSZ Thermal Barrier Coatings Processed by Suspension Plasma Spray, Surf. Coat. Technol., 2015, 283, p 329-336

    Article  Google Scholar 

  13. G. Moskal, L. Swadźba, M. Hetmańczyk, B. Witala, B. Mendala, J. Mendala, and P. Sosnowy, Characterization of Microstructure and Thermal Properties of Gd2Zr2O7-Type Thermal Barrier Coating, J. Eur. Ceram. Soc., 2012, 32(9), p 2025-2034

    Article  Google Scholar 

  14. G. Mauer, M.O. Jarligo, D.E. Mack, and R. Vaßen, Plasma-Sprayed Thermal Barrier Coatings: New Materials, Processing Issues, and Solutions, J. Therm. Spray Technol., 2013, 22, p 646-658

    Article  Google Scholar 

  15. R.M. Leckie, S. Krämer, M. Rühle, and C.G. Levi, Thermochemical Compatibility Between Alumina and ZrO2–GdO3/2 Thermal Barrier Coatings, Acta Mater., 2005, 53(11), p 3281-3292

    Article  Google Scholar 

  16. E. Bakan, D.E. Mack, G. Mauer, and R. Vaßen, Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure, and Thermal Cycling Behavior, J. Am. Ceram. Soc., 2014, 97(12), p 4045-4051

    Article  Google Scholar 

  17. X. Zhong, H. Zhao, C. Liu, L. Wang, F. Shao, X. Zhou, S. Tao, and C. Ding, Improvement in Thermal Shock Resistance of Gadolinium Zirconate Coating by Addition of Nanostructured Yttria Partially-Stabilized Zirconia, Ceram. Int., 2015, 41(6), p 7318-7324

    Article  Google Scholar 

  18. K.S. Lee, D.H. Lee, and T.W. Kim, Microstructure Controls in Gadolinium Zirconate/YSZ Double Layers and Their Properties, J. Ceram. Soc. Jpn., 2014, 122(1428), p 668-673

    Article  Google Scholar 

  19. J.R. Nicholls, M.J. Deakin, and D.S. Rickerby, A Comparison Between the Erosion Behaviour of Thermal Spray and Electron Beam Physical Vapour Deposition Thermal Barrier Coatings, Wear, 1999, 233–235, p 352-361

    Article  Google Scholar 

  20. R.G. Wellman and J.R. Nicholls, A Review of the Erosion of Thermal Barrier Coatings, J. Phys. Appl. Phys., 2007, 40(16), p R293

    Article  Google Scholar 

  21. P. Sokołowski, S. Kozerski, L. Pawłowski, and A. Ambroziak, The key Process Parameters Influencing Formation of Columnar Microstructure in Suspension Plasma Sprayed Zirconia Coatings, Surf. Coat. Technol., 2014, 260, p 97-106

    Article  Google Scholar 

  22. N. Curry, Z. Tang, N. Markocsan, and P. Nylén, Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings—Thermal and Lifetime Performance, Surf. Coat. Technol., 2015, 268, p 15-23

    Article  Google Scholar 

  23. N. Curry, K. VanEvery, T. Snyder, and N. Markocsan, Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier, Coatings, 2014, 4(3), p 630-650

    Article  Google Scholar 

  24. S. Mahade, R. Li, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, Isothermal Oxidation Behavior of Gd2Zr2O7/YSZ Multilayered Thermal Barrier Coatings, Int. J. Appl. Ceram. Technol., 2016, 13(3), p 443-450

    Article  Google Scholar 

  25. C.S. Ramachandran, V. Balasubramanian, and P.V. Ananthapadmanabhan, Erosion of Atmospheric Plasma Sprayed Rare Earth Oxide Coatings Under Air Suspended Corundum Particles, Ceram. Int., 2013, 39(1), p 649-672

    Article  Google Scholar 

  26. V. Viswanathan, G. Dwivedi, and S. Sampath, Multilayer, Multimaterial Thermal Barrier Coating Systems: Design, Synthesis, and Performance Assessment, J. Am. Ceram. Soc., 2015, 98(6), p 1769-1777

    Article  Google Scholar 

  27. “ISO 18754:2013—Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Density and Apparent Porosity,” ISO. [Online]. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=55448

  28. “ImageJ,” Softonic. [Online]. http://imagej.en.softonic.com/

  29. N.A. Fleck and T. Zisis, The Erosion of EB-PVD Thermal Barrier Coatings: The Competition Between Mechanisms, Wear, 2010, 268(11–12), p 1214-1224

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from KK foundation (Dnr 20140130), Sweden. The authors would also like to thank Mr. Martin Tandler from Institute of Energy and Climate Research (IEK-1), Forschungszentrum Jülich GmbH, for carrying out the erosion test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyapal Mahade.

Additional information

This article is an invited paper selected from presentations at the 2016 International Thermal Spray Conference, held May 10-12, 2016, in Shanghai, P. R. China, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahade, S., Curry, N., Björklund, S. et al. Erosion Performance of Gadolinium Zirconate-Based Thermal Barrier Coatings Processed by Suspension Plasma Spray. J Therm Spray Tech 26, 108–115 (2017). https://doi.org/10.1007/s11666-016-0479-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0479-4

Keywords

Navigation