Skip to main content
Log in

Microstructural Analysis of Cold-Sprayed Ti-6Al-4V at the Micro- and Nano-Scale

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The microstructure of cold-sprayed Ti-6Al-4V is unlike the structure resulting from any other processing technique. The unique characteristics are derived from the solid state thermomechanical processing of predominantly martensitic feedstock powders. During deposition, these powders undergo high strain rate deformation, leading to shear band-induced transformation of martensitic grains into nano-scale martensite, equiaxed alpha structures, and nanostructured alpha grains. The resultant microstructure evolution is dependent on the magnitude and direction of shear undergone by the particles. The specific structure and mechanism for formation of these regions will be discussed in detail using nanohardness mapping, scanning electron microscopy, and transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W. Babcock, AMPTIAC, AMPTIAC Newsl., 2002, 6(2), p 26-31

    Google Scholar 

  2. S. Seong, O. Younossi, and B.W. Goldsmith, Titanium: Industrial Base, Price Trends, and Technology Initiatives, Rand Corporation, Santa Monica, 2009

    Google Scholar 

  3. E. Brandl, A. Schoberth, and C. Leyens, Morphology, Microstructure, and Hardness of Titanium (Ti-6Al-4V) Blocks Deposited by Wire-Feed Additive Layer Manufacturing (ALM), Mater. Sci. Eng. A, 2012, 532, p 295-307

    Article  Google Scholar 

  4. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.-P. Kruth, A study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303-3312

    Article  Google Scholar 

  5. B. Baufeld, O.V. der Biest, and R. Gault, Additive Manufacturing of Ti-6Al-4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties, Mater. Des., 2010, 31, p S106-S111

    Article  Google Scholar 

  6. T. Vilaro, C. Colin, and J.-D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A, 2011, 42(10), p 3190-3199

    Article  Google Scholar 

  7. L. Facchini, E. Magalini, P. Robotti, and A. Molinari, Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of Pre-alloyed Powders, Rapid Prototyp. J., 2009, 15(3), p 171-178

    Article  Google Scholar 

  8. L. Murr, S. Quinones, S. Gaytan, M. Lopez, A. Rodela, E. Martinez et al., Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2009, 2(1), p 20-32

    Article  Google Scholar 

  9. L. Murr, E. Esquivel, S. Quinones, S. Gaytan, M. Lopez, E. Martinez et al., Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V, Mater. Charact., 2009, 60(2), p 96-105

    Article  Google Scholar 

  10. X. Wu, J. Liang, J. Mei, C. Mitchell, P. Goodwin, and W. Voice, Microstructures of Laser-Deposited Ti-6Al-4V, Mater. Des., 2004, 25(2), p 137-144

    Article  Google Scholar 

  11. G. Bae, K. Kang, J.-J. Kim, and C. Lee, Nanostructure Formation and Its Effects on the Mechanical Properties of Kinetic Sprayed Titanium Coating, Mater. Sci. Eng. A, 2010, 527(23), p 6313-6319

    Article  Google Scholar 

  12. V.K. Champagne, The Repair of Magnesium Rotorcraft Components by Cold Spray, J. Fail. Anal. Prev., 2008, 8(2), p 164-175

    Article  Google Scholar 

  13. V.K. Champagne, D.J. Helfritch, and M.D. Trexler, Some Material Characteristics of Cold-Sprayed Structures, Adv. Mater. Sci. Eng., 2007, Article ID 27347.

  14. Q. Zhang, C.-J. Li, C.-X. Li, G.-J. Yang, and S.-C. Lui, Study of Oxidation Behavior of Nanostructured NiCrAlY Bond Coatings Deposited by Cold Spraying, Surf. Coat. Technol., 2008, 202(14), p 3378-3384

    Article  Google Scholar 

  15. B. DeForce, T. Eden, J. Potter, V. Champagne, P. Leyman, and D. Helfritch, Application of Aluminum Coatings for the Corrosion Protection of Magnesium by Cold Spray, Tri-Service Corrosion Conference, 2007.

  16. N. Sanpo, M.L. Tan, P. Cheang, and K. Khor, Antibacterial Property of Cold-Sprayed Ha-Ag/Peek Coating, J. Therm. Spray Technol., 2009, 18(1), p 10-15

    Article  Google Scholar 

  17. T. Stoltenhoff, H. Kreye, and H. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542-550

    Article  Google Scholar 

  18. H. Assadi, T. Schmidt, H. Richter, J.-O. Kliemann, K. Binder, F. Gärtner et al., On Parameter Selection in Cold Spraying, J. Therm. Spray Technol., 2011, 20(6), p 1161-1176

    Article  Google Scholar 

  19. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51(15), p 4379-4394

    Article  Google Scholar 

  20. S. Yue, A. Rezaeian, J.G. Legoux, W. Wong, and E. Irissou, Cold Spray Characteristics of Commercially Pure Ti and Ti-6Al-4V, Adv. Mater. Res., 2010, 89, p 639-644

    Google Scholar 

  21. C.-J. Li and W.-Y. Li, Deposition Characteristics of Titanium Coating in Cold Spraying, Surf. Coat. Technol., 2003, 167(2), p 278-283

    Article  Google Scholar 

  22. D. Goldbaum, J.M. Shockley, R.R. Chromik, A. Rezaeian, S. Yue, J.-G. Legoux et al., The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats, J. Therm. Spray Technol., 2012, 21(2), p 288-303

    Article  Google Scholar 

  23. M.J. Donachie, Titanium: A Technical Guide, ASM International, Materials Park, 2000

    Google Scholar 

  24. J. Sieniawski, W. Ziaja, K. Kubiak, and M. Motyka, Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys, 2013

  25. R. Boyer, An Overview on the Use of Titanium in the Aerospace Industry, Mater. Sci. Eng. A, 1996, 213(1), p 103-114

    Article  Google Scholar 

  26. S.H. Zahiri, D. Fraser, and M. Jahedi, Recrystallization of Cold Spray-Fabricated CP Titanium Structures, J. Therm. Spray Technol., 2009, 18(1), p 16-22

    Article  Google Scholar 

  27. P. Vo, E. Irissou, J.-G. Legoux, and S. Yue, Mechanical and Microstructural Characterization of Cold-Sprayed Ti-6Al-4V After Heat Treatment, J. Therm. Spray Technol., 2013, 22(6), p 954-964

    Article  Google Scholar 

  28. H. Chandler, Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys, ASM International, Materials Park, 1996

    Google Scholar 

  29. T. Ahmed and H. Rack, Phase Transformations During Cooling in α + β Titanium Alloys, Mater. Sci. Eng. A, 1998, 243(1), p 206-211

    Article  Google Scholar 

  30. E. Collings, The Physical Metallurgy of Titanium Alloys, American Society for Metals, Metals Park, OH, 1984

    Google Scholar 

  31. A. Birt, V. Champagne, R. Sisson, and D. Apelian, Microstructural Analysis of Ti-6Al-4V Powder for Cold Gas Dynamic Spray Applications, Adv. Powder Technol., 2014. doi:10.1016/j.apt.2015.07.008

  32. G.F. Vander Voort, Metallography: Principles And Practices, ASM International, Materials Park, 1984

    Google Scholar 

  33. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54(3), p 729-742

    Article  Google Scholar 

  34. S. Rahmati and A. Ghaei, The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process, J. Therm. Spray Technol., 2014, 23(3), p 530-540

    Article  Google Scholar 

  35. R.S. Mishra, V. Stolyarov, C. Echer, R. Valiev, and A. Mukherjee, Mechanical Behavior and Superplasticity of a Severe Plastic Deformation Processed Nanocrystalline Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2001, 298(1), p 44-50

    Article  Google Scholar 

  36. L. Bassett, The Effect of Cold Spray Impact Conditions on Particle Deformation and Temperature Increase, 2014 (submitted)

Download references

Acknowledgments

Special thanks to U.S. Army Research Laboratory Contract #: W911NF-10-2-0098 for sponsoring and directing this research, as well as taking the time to consult and produce samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Birt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birt, A.M., Champagne, V.K., Sisson, R.D. et al. Microstructural Analysis of Cold-Sprayed Ti-6Al-4V at the Micro- and Nano-Scale. J Therm Spray Tech 24, 1277–1288 (2015). https://doi.org/10.1007/s11666-015-0288-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-015-0288-1

Keywords

Navigation