Skip to main content
Log in

Plasma Spraying of Ceramics with Particular Difficulties in Processing

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X.Q. Cao, R. Vaßen, W. Jungen, S. Schwartz, F. Tietz, and D. Stöver, Thermal Stability of Lanthanum Zirconate Plasma-Sprayed Coating, J. Am. Ceram. Soc., 2001, 84, p 2086-2090

    Article  Google Scholar 

  2. J.L. Margrave, Ed., The Characterization of High Temperature Vapors, Wiley, New York, 1967

    Google Scholar 

  3. G.V. Samsonov, Ed., The Oxide Handbook, 2nd ed., IFI/Plenum, New York, 1986

    Google Scholar 

  4. G. Mauer, D. Sebold, R. Vaßen, and D. Stöver, Improving Atmospheric Plasma Spraying of Zirconate Thermal Barrier Coatings Based on Particle Diagnostics, J. Therm. Spray Technol., 2012, 21, p 363-371

    Article  Google Scholar 

  5. O. Büchler, J.M. Serra, W.A. Meulenberg, D. Sebold, and H.P. Buchkremer, Preparation and Properties of Thin LSFC Perovskitic Membranes Supported on Tailored Ceramic Substrates, Solid State Ion., 2007, 178, p 91-99

    Article  Google Scholar 

  6. J. Harris and O. Kesler, Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells, J. Therm. Spray Technol., 2010, 19, p 328-335

    Article  Google Scholar 

  7. A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vaßen, and D. Stöver, Review on New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20, p 677-695

    Article  Google Scholar 

  8. H. Kaßner, R. Vaßen, and D. Stöver, Study on Instant Droplet and Particle Stages During Suspension Plasma Spraying (SPS), Surf. Coat. Technol., 2008, 202, p 4355-4361

    Article  Google Scholar 

  9. M.F. Smith, A.C. Hall, J.D. Fleetwood, and P. Meyer, Very Low Pressure Plasma Spray—A Review of an Emerging Technology in the Thermal Spray Community, Coatings, 2011, 1, p 117-132

    Article  Google Scholar 

  10. A. Hospach, G. Mauer, R. Vaßen, and D. Stöver, Characteristics of Ceramic Coatings Made by Thin Film Low Pressure Plasma Spraying (LPPS-TF), J. Therm. Spray Technol., 2012, 21, p 435-440

    Article  Google Scholar 

  11. N. Zotov, S. Baumann, W.A. Meulenberg, and R. Vaßen, La-Sr-Fe-Co Oxygen Transport Membranes on Metal Supports Deposited by Low Pressure Plasma Spraying-Physical Vapour Deposition, J. Membr. Sci., 2013, 442, p 119-123

    Article  Google Scholar 

  12. M.O. Jarligo, G. Mauer, M. Bram, S. Baumann, and R. Vaßen, Plasma Spray Physical Vapor Deposition of La1−x Sr x Co y Fe1−y O3−δ Thin-Film Oxygen Transport Membrane on Porous Metallic Supports, J. Therm. Spray Technol., 2014, 23, p 213-219

    Article  Google Scholar 

  13. K. von Niessen and M. Gindrat, Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase, J. Therm. Spray Technol., 2011, 20, p 736-743

    Article  Google Scholar 

  14. K. von Niessen, M. Gindrat, and A. Refke, Vapor Phase Deposition Using Plasma Spray-PVD, J. Therm. Spray Technol., 2010, 19, p 502-509

    Article  Google Scholar 

  15. G. Mauer, A. Hospach, N. Zotov, and R. Vaßen, Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying, J. Therm. Spray Technol., 2013, 22, p 83-89

    Article  Google Scholar 

  16. G. Mauer, A. Hospach, and R. Vaßen, Process development and Coating Characteristics of Plasma Spray-PVD, Surf. Coat. Technol., 2013, 220, p 219-224

    Article  Google Scholar 

  17. S. Rezanka, G. Mauer, and R. Vaßen, Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD, J. Therm. Spray Technol., 2014, 23, p 182-189

    Article  Google Scholar 

  18. N. Zotov, A. Hospach, G. Mauer, D. Sebold, and R. Vaßen, Deposition of La-Sr-Fe-Co Perovskite Coatings with Different Microstructures by Low Pressure Plasma Spraying, J. Therm. Spray Technol., 2012, 21, p 441-447

    Article  Google Scholar 

  19. W.M. Haynes, Ed., CRC Handbook of Chemistry and Physics, 94th ed. (Internet Version 2014), CRC Press/Taylor and Francis, Boca Raton, FL, 2014

  20. A. Guignard, “Development of Thermal Spray Processes with Liquid Feedstocks.” PhD thesis, Ruhr-Universität Bochum, Forschungszentrum Jülich, Germany, 2012

  21. J. Pannetier, Energie Electrostatique des Reseaux Pyrochlore, J. Phys. Chem. Solids, 1973, 34, p 583-589 [in French]

  22. R. Vaßen, “Entwicklung neuer oxidischer Wärmedämmschichten für Anwendungen in stationären und Flug-Gasturbinen (in German),” Postdoctoral thesis Ruhr-Universität Bochum, Forschungszentrum Jülich, Germany, 2004

  23. H. Chen, Y. Gao, Y. Liu, and H. Luo, Coprecipitation Synthesis and Thermal Conductivity of La2Zr2O7, J. Alloys Compd., 2009, 480, p 843-848

    Article  Google Scholar 

  24. B.J. Wuensch and K.W. Eberman, Order-Disorder Phenomena in A2B2O7 Pyrochlore Oxides, JOM, 2000, 52, p 19-21

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the preparation of the SEM and EDS investigations by Dr. Doris Sebold, Forschungszentrum Jülich, IEK-1. The work on membranes by PS-PVD was part of the DEMOYS Project funded by the European Community (Grant Agreement No. 241309) in the Seventh Framework Program (FP7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mauer.

Additional information

This article is an invited paper selected from presentations at the 2014 International Thermal Spray Conference, held May 21-23, 2014, in Barcelona, Spain, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauer, G., Schlegel, N., Guignard, A. et al. Plasma Spraying of Ceramics with Particular Difficulties in Processing. J Therm Spray Tech 24, 30–37 (2015). https://doi.org/10.1007/s11666-014-0149-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0149-3

Keywords

Navigation