Skip to main content
Log in

Numerical Analysis of Multicomponent Suspension Droplets in High-Velocity Flame Spray Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The liquid feedstock or suspension as a different mixture of liquid fuel ethanol and water is numerically studied in high-velocity suspension flame spray (HVSFS) process, and the results are compared for homogenous liquid feedstock of ethanol and water. The effects of mixture on droplet aerodynamic breakup, evaporation, combustion, and gas dynamics of HVSFS process are thoroughly investigated. The exact location where the particle heating is initiated (above the carrier liquid boiling point) can be controlled by increasing the water content in the mixture. In this way, the particle inflight time in the high-temperature gas regions can be adjusted avoiding adverse effects from surface chemical transformations. The mixture is modeled as a multicomponent droplet, and a convection/diffusion model, which takes into account the convective flow of evaporating material from droplet surface, is used to simulate the suspension evaporation. The model consists of several sub-models that include premixed combustion of propane-oxygen, non-premixed ethanol-oxygen combustion, modeling of multicomponent droplet breakup and evaporation, as well as heat and mass transfer between liquid droplets and gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, J. Rauch, and M. Romagnoli, Effect of the Suspension Composition on the Microstructural Properties of High Velocity Suspension Flame Sprayed (HVSFS) Al2O3 Coatings, Surf. Coat. Technol., 2010, 204(8), p 1163-1179

    Article  Google Scholar 

  2. E. Bemporad, G. Bolelli, V. Cannillo, D. De Felicis, R. Gadow, A. Killinger, and L. Lusvarghi, Structural Characterisation of High Velocity Suspension Flame Sprayed (HVSFS) TiO2 Coatings, Surf. Coat. Technol., 2010, 204(23), p 3902-3910

    Article  Google Scholar 

  3. N. Stiegler, D. Bellucci, G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, and A. Sola, High-Velocity Suspension Flame Sprayed (HVSFS) Hydroxyapatite Coatings for Biomedical Applications, J. Therm. Spray Technol., 2012, 21(2), p 275-287

    Article  Google Scholar 

  4. J. Oberste-Berghaus, J.-G. Legoux, C. Moreau, F. Tarasi, and T. Chraska, Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings, J. Therm. Spray Technol., 2008, 17(1), p 91-104

    Article  Google Scholar 

  5. R. Gadow, A. Killinger, and J. Rauch, New Results in High Velocity Suspension Flame Spraying (HVSFS), Surf. Coat. Technol., 2008, 202(18), p 4329-4336

    Article  Google Scholar 

  6. P. Fauchais, R. Etchart-Salas, V. Rat, J.F. Coudert, N. Caron, and K. Wittmann-Ténèze, Parameters Controlling Liquid Plasma Spraying: Solutions, Sols, or Suspensions, J. Therm. Spray Technol., 2008, 17(1), p 31-59

    Article  Google Scholar 

  7. R. Rampon, F.-L. Toma, G. Bertrand, and C. Coddet, Liquid Plasma Sprayed Coatings of Yttria-Stabilized Zirconia for SOFC Electrolytes, J. Therm. Spray Technol., 2006, 15(4), p 682-688

    Article  Google Scholar 

  8. C. Monterrubio-Badillo, H. Ageorges, T. Chartier, J.F. Coudert, and P. Fauchais, Preparation of LaMnO3 Perovskite Thin Films by Suspension Plasma Spraying for SOFC Cathodes, Surf. Coat. Technol., 2006, 200(12-13), p 3743-3756

    Article  Google Scholar 

  9. A. Killinger, M. Kuhn, and R. Gadow, High-Velocity Suspension Flame Spraying (HVSFS). A New Approach for Spraying Nanoparticles with Hypersonic Speed, Surf. Coat. Technol., 2006, 201, p 1922-1929

    Article  Google Scholar 

  10. P. Fauchais, V. Rat, J.-F. Coudert, R. Etchart-Salas, and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202, p 4309-4317

    Article  Google Scholar 

  11. G. Bertolissi, C. Chazelas, G. Bolelli, L. Lusvarghi, M. Vardelle, and A. Vardelle, Engineering the Microstructure of Solution Precursor Plasma-Sprayed Coatings, J. Therm. Spray Technol., 2012, 21(6), p 1148-1162

    Article  Google Scholar 

  12. D. Chen, E.H. Jordan, and M. Gell, The Solution Precursor Plasma Spray Coatings Influence of Solvent Type, J. Plasma Chem. Plasma Process., 2010, 30(1), p 111-119

    Article  Google Scholar 

  13. E. Dongmo, A. Killinger, M. Wenzelburger, and R. Gadow, Numerical Approach and Optimization of the Combustion and Injection Techniques in High Velocity Suspension Flame Spraying (HVSFS), Surf. Coat. Technol., 2009, 203(15), p 2139-2145

    Article  Google Scholar 

  14. E. Dongmo, R. Gadow, A. Killinger, and M. Wenzelburger, Modeling of Combustion as well as Heat, Mass, and Momentum Transfer During Thermal Spraying by HVOF and HVSFS, J. Therm. Spray Technol., 2009, 18(5-6), p 896-908

    Article  Google Scholar 

  15. S. Kamnis and S. Gu, Numerical Modeling of Propane Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun, Chem. Eng. Process., 2006, 45(4), p 246-253

    Article  Google Scholar 

  16. S. Kamnis and S. Gu, 3-D Modeling of Kerosene-Fuelled HVOF Thermal Spray Gun, Chem. Eng. Sci., 2006, 61(16), p 5427-5439

    Article  Google Scholar 

  17. E. Gozali, S. Kamnis, and S. Gu, Numerical Investigation of Combustion and Liquid Feedstock in High Velocity Suspension Flame Spraying Process, Surf. Coat. Technol., 2013, 228, p 176-186

    Article  Google Scholar 

  18. T. Furuhata, S. Tanno, T. Miura, Y. Ikeda, and T. Nakajima, Performance of Numerical Spray Combustion Simulation, Energy Convers. Manag., 1997, 38(10-13), p 1111-1122

    Article  Google Scholar 

  19. E. Brinley, K.S. Babu, and S. Seal, The Solution Precursor Plasma Spray Processing of Nanomaterials, J. Miner. Met. Mater. Soc., 2007, 59(7), p 54-59

    Article  Google Scholar 

  20. N. Zeoli, S. Gu, and S. Kamnis, Numerical Modeling of Metal Droplet Cooling and Solidification, Int. J. Heat Mass Transf., 2008, 51(15-16), p 4121-4131

    Article  Google Scholar 

  21. B.E. Gelfand, Droplet Breakup Phenomena in Flows with Velocity Lag, Prog. Energy Combust. Sci., 1996, 22, p 201-265

    Article  Google Scholar 

  22. S. Kamnis, S. Gu, T.J. Lu, and C. Chen, Computational Simulation of Thermally Sprayed WC-Co Powder, Comput. Mater. Sci., 2008, 43, p 1172-1182

    Article  Google Scholar 

  23. N. Zeoli, S. Gu, and S. Kamnis, Numerical Simulation of In-Flight Particle Oxidation during Thermal Spraying, Comput. Chem. Eng., 2008, 32(7), p 1661-1668

    Article  Google Scholar 

  24. R.S. Miller, K. Harstad, and J. Bellan, Evaluation of Equilibrium and Non-equilibrium Evaporation Models for Many Droplet Gas-Liquid Flow Simulations, Int. J. Multiph. Flow, 1998, 24(6), p 1025-1055

    Article  Google Scholar 

  25. S.S. Sazhin, Advanced Models of Fuel Droplet Heating and Evaporation, Prog. Energy Combust. Sci., 2006, 32, p 162-214

    Article  Google Scholar 

  26. W.E. Ranz and W.R. Marshall, Evaporation from Drops, Part I, Chem. Eng. Prog., 1952, 48, p 141-146

    Google Scholar 

  27. W.E. Ranz and W.R. Marshall, Evaporation from Drops, Part I, and Part II, Chem. Eng. Prog., 1952, 48, p 173-180

    Google Scholar 

  28. R.H. Perry and D.W. Green, Perry’s Chemical Engineers’ Handbook, 7th ed., McGraw-Hill, New York, 1997

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge financial support for the research studentship from the School of Engineering in Xi’an Jiaotong-Liverpool University and the financial support by the UK Engineering and Physical Sciences Research Council (EPSRC) Project Grant: EP/K027530/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros Kamnis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozali, E., Mahrukh, M., Gu, S. et al. Numerical Analysis of Multicomponent Suspension Droplets in High-Velocity Flame Spray Process. J Therm Spray Tech 23, 940–949 (2014). https://doi.org/10.1007/s11666-014-0106-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0106-1

Keywords

Navigation