Skip to main content
Log in

CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-Stabilized ZrO2 with Al3+ and Ti4+ Solute Additions

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The higher operating temperatures in gas-turbine engines made possible by thermal barrier coatings (TBCs) are engendering a new problem: environmentally ingested airborne silicate particles (sand, ash) melt on the hot TBC surfaces and form calcium-magnesium-alumino-silicate (CMAS) glass deposits. The molten CMAS glass degrades the TBCs, leading to their premature failure. Here, we demonstrate the use of a commercially manufactured feedstock powder, in conjunction with air plasma spray process, to deposit CMAS-resistant yttria-stabilized zirconia-based TBCs containing Al3+ and Ti4+ in solid solution. Results from the characterization of these new TBCs and CMAS/TBCs interaction experiments are presented. The CMAS mitigation mechanisms in these new TBCs involve the crystallization of the anorthite phase. Raman microscopy is used to generate large area maps of the anorthite phase in the CMAS-interacted TBCs demonstrating the potential usefulness of this method for studying CMAS/TBCs interactions. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context, the versatility, ease of processing, and low cost offered by the process demonstrated here could benefit the development of these new CMAS-resistant TBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284

    Article  Google Scholar 

  2. A.G. Evans, D.R. Clarke, and C.G. Levi, The Influence of Oxides on the Performance of Advanced Gas Turbines, J. Eur. Ceram. Soc., 2008, 28(7), p 1405-1419

    Article  Google Scholar 

  3. D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines, MRS Bull., 2012, 37(10), p 891-898

    Article  Google Scholar 

  4. J. Kim, M.G. Dunn, A.J. Baran, D.P. Wade, and E.L. Tremba, Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines, J. Eng. Gas Turbines Power, 1993, 115(3), p 641-651

    Article  Google Scholar 

  5. D.J. DeWet, R. Taylor, and F.H. Stott, Corrosion Mechanisms of ZrO2-Y2O3 Thermal Barrier Coatings in the Presence of Molten Middle-East Sand, J. Phys. IV., 1993, 3(C9), p 655-663

    Google Scholar 

  6. J.L. Smialek, F.A. Archer, and R.G. Garlick, Turbine Airfoil Degradation in the Persian Gulf War, JOM, 1994, 46(12), p 39-41

    Article  Google Scholar 

  7. F.H. Stott, D.J. DeWet, and R. Taylor, Degradation of Thermal Barrier Coatings at Very High Temperatures, MRS Bull., 1994, 19(10), p 46-49

    Google Scholar 

  8. M.P. Borom, C.A. Johnson, and L.A. Peluso, Role of Environmental Deposits and Operating Surface Temperature in Spallation of Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 1996, 86-87, p 116-126

    Article  Google Scholar 

  9. S. Krämer, J. Yang, C.G. Levi, and C.A. Johnson, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89(10), p 3167-3175

    Article  Google Scholar 

  10. A. Aygun, A.L. Vasiliev, N.P. Padture, and X. Ma, Novel Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits, Acta. Mater., 2007, 55(20), p 6734-6745

    Article  Google Scholar 

  11. A.G. Evans and J.W. Hutchinson, The Mechanics of Coating Delamination in Thermal Gradients, Surf. Coat. Technol., 2007, 201(18), p 7905-7916

    Article  Google Scholar 

  12. J.P. Bons, J. Crosby, J.E. Wammack, B.I. Bentley, and T.H. Fletcher, High Pressure Turbine Deposition in Land-Based Gas Turbines with Various Synfuels, J. Eng. Gas Turbines Power, 2005, 129(1), p 135-143

    Article  Google Scholar 

  13. J.M. Crosby, S. Lewis, J.P. Bons, W.G. Ali, and T.H. Fletcher, Effects of Temperature and Size on Deposition in Land Based Turbines, J. Eng. Gas Turbines Power, 2008, 130(5), p 051503(1-9)

    Google Scholar 

  14. S. Krämer, J. Yang, and C.G. Levi, Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts, J. Am. Ceram. Soc., 2008, 91(2), p 576-583

    Article  Google Scholar 

  15. S. Krämer, S. Faulhaber, M. Chambers, D.R. Clarke, C.G. Levi, J.W. Hutchinson, and A.G. Evans, Mechanisms of Cracking and Delamination within Thick Thermal Barrier Systems in Aero-Engines Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) Penetration, Mater. Sci. Eng., 2008, A 490(1-2), p 26-35

    Google Scholar 

  16. Z. Xue, A.G. Evans, and J.W. Hutchinson, Delamination Susceptibility of Coatings Under High Thermal Flux, J. App. Mech. Trans. ASME, 2009, 76(4), p 041008(1-7)

    Google Scholar 

  17. J.M. Drexler, A. Aygun, D. Li, R. Vaßen, T. Steinke, and N.P. Padture, Thermal-Gradient Testing of Thermal Barrier Coatings Under Simultaneous Attack by Molten Glassy Deposits and its Mitigation, Surf. Coat. Technol., 2010, 204(16-17), p 2683-2688

    Article  Google Scholar 

  18. R. Wellman, G. Whitman, and J.R. Nicholls, CMAS Corrosion of EB-PVD TBCs: Identifying the Minimum Level to Initiate Damage, Int. J. Refract. Met., 2010, 28(1), p 124-132

    Article  Google Scholar 

  19. J.M. Drexler, K. Shinoda, A.L. Ortiz, D. Li, A.L. Vasiliev, A.D. Gledhill, S. Sampath, and N.P. Padture, Air-Plasma-Sprayed Thermal Barrier Coatings that are Resistant to High-Temperature Attack by Glassy Deposits, Acta. Mater., 2010, 58(20), p 6835-6844

    Article  Google Scholar 

  20. P. Mechnich, W. Braue, and U. Schulz, High-Temperature Corrosion of EB-PVD Yttria Partially Stabilized Thermal Barrier Coatings with an Artificial Volcanic Ash Overlay, J. Am. Ceram. Soc., 2011, 94(3), p 925-931

    Article  Google Scholar 

  21. J. Wu, H.-B. Guo, Y.-Z. Gao, and S.-K. Gong, Microstructure and Thermo-Physical Properties of Yttria Stabilized Zirconia Coatings with CMAS Deposits, J. Eur. Ceram. Soc, 2011, 31(10), p 1881-1888

    Article  Google Scholar 

  22. C.G. Levi, J.W. Hutchinson, M.-H. Vidal-Setif, and C.A. Johnson, Environmental Degradation of Thermal-Barrier Coatings by Molten Deposits, MRS Bull., 2012, 37(10), p 932-941

    Article  Google Scholar 

  23. J. Webb, B. Casaday, B. Barker, J.P. Bons, A.D. Gledhill, and N.P. Padture, Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types, J. Turbomach, 2013, 135(2), p 021033

    Google Scholar 

  24. P. Mohan, T. Patterson, B. Yao, and Y. Sohn, Degradation of Thermal Barrier Coatings by Fuel Impurities and CMAS: Thermochemical Interactions and Mitigation Approaches, J. Therm. Spray Technol., 2010, 19(1-2), p 156-167

    Article  Google Scholar 

  25. J.M. Drexler, A.D. Gledhill, K. Shinoda, A.L. Vasiliev, K.M. Reddy, S. Sampath, and N.P. Padture, Jet Engine Coatings for Resisting Volcanic Ash Damage, Adv. Mater., 2011, 23(21), p 2419-2424

    Article  Google Scholar 

  26. J.M. Drexler, A.L. Ortiz, and N.P. Padture, Composition Effects of Thermal Barrier Coating Ceramics on Their Interaction with Molten Ca-Mg-Al-Silicate (CMAS) Glass, Acta. Mater., 2012, 60(15), p 5437-5447

    Article  Google Scholar 

  27. M. Freling, M.J. Maloney, D.A. Litton, K.W. Schlichting, J.G. Smeggil, and D.B. Snow, Thermal Barrier Coating Compositions, Processes for Applying Same and Articles Coated with Same, U.S. Patent No., 7,455,913 (2008)

  28. M. Freling, K.W. Schlichting, M.J. Maloney, D.A. Litton, J.G. Smeggil, and D.B. Snow, CMAS Resistant Thermal Barrier Coating, U.S. Patent No., 7,785,722 (2010)

  29. D.A. Litton, K.W. Schlichting, M. Freling, J.G. Smeggil, D.B. Snow, and M.J. Maloney, Durable Reactive Thermal Barrier Coatings, U.S. Patent No., 7,662,489 (2010)

  30. A.D. Gledhill, K.M. Reddy, J.M. Drexler, K. Shinoda, S. Sampath, and N.P. Padture, Mitigation of Damage from Molten Fly Ash to Air-Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng. A, 2011, 528(24), p 7214-7221

    Article  Google Scholar 

  31. J.M. Drexler, C.-H. Chen, A.D. Gledhill, K. Shinoda, S. Sampath, and N.P. Padture, Plasma Sprayed Gadolinium Zirconate Thermal Barrier Coatings that are Resistant to Damage by Molten Ca-Mg-Al-Silicate Glass, Surf. Coat. Technol., 2012, 206(19-20), p 3911-3916

    Article  Google Scholar 

  32. A.M. Alper and G.H. Stewart, Science of Ceramics, Vol 3, Academic Press, London, 1967

    Google Scholar 

  33. A. Vaidya, V. Srinivasan, T. Streibl, M. Friis, W. Chi, and S. Sampath, Process Maps for Plasma Spraying of Yttria-Stabilized Zirconia: An Integrated Approach to Design, Optimization and Reliability, Mater. Sci. Eng. A, 2008, 497(1-2), p 239-253

    Article  Google Scholar 

  34. W. Chi, S. Sampath, and H. Wang, Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Am. Ceram Soc., 2008, 91(8), p 2636-2645

    Article  Google Scholar 

  35. S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control and In situ Measurement of Coating Properties: An Integrated Approach Towards Establishing Process-Property Correlations, J. Therm. Spray. Technol., 2009, 18(2), p 243-255

    Article  Google Scholar 

  36. R.A. Young, The Rietveld Method, Oxford University Press, Oxford, 1993

    Google Scholar 

  37. L.B. McCusker, R.B.V. Dreele, D.E. Cox, D. Louer, and P. Scardi, Reitveld Refinement Guidelines, J. Appl. Cryst., 1999, 32(1), p 36-50

    Article  Google Scholar 

  38. T. Roisel and J. Rodriguez-Carvajal, WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis, Mater. Sci. Forum, 2011, 378-381, p 118-123

    Article  Google Scholar 

  39. R.L. Parc, B. Champagnon, J. Dianoux, P. Jarry, and V. Martinez, Anorthite and CaAl2Si2O8 Glass: Low Frequency Raman Spectroscopy and Neutron Scattering, J. Non-Cryst. Solids, 2003, 323(1-3), p 155-161

    Article  Google Scholar 

  40. Z.C. Ling, A. Wang, and B.L. Jolliff, Mineralogy and Geochemistry of Four Lunar Soils by Laser-Raman Study, Icarus, 2011, 211(1), p 101-113

    Article  Google Scholar 

  41. H. Wang, R.B. Dinwiddie, and W.D. Porter, Development of a Thermal Transport Database for Air Plasma Sprayed ZrO2-Y2O3 Thermal Barrier Coatings, J. Therm. Spray Technol., 2010, 19(5), p 879-883

    Article  Google Scholar 

  42. S. Lakiza, O. Fabrichnaya, M. Zinkevich, and F. Aldinger, On the Phase Relations in the ZrO2-YO1.5-AlO1.5 System, J. Alloys Compd., 2006, 420(1-2), p 237-245

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms. J. Freese, Ms. A. Krause, Dr. W.B. Choi, and Mr. T. Wentz for experimental assistance, and Dr. J. Liu (Sulzer-Metco) for developing and supplying the YSZ + Al + Ti feedstock powders. We are grateful to the Office of Naval Research for supporting this research (Grant No. N00014-12-10175, monitored by Dr. D. Shifler).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin P. Padture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senturk, B.S., Garces, H.F., Ortiz, A.L. et al. CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-Stabilized ZrO2 with Al3+ and Ti4+ Solute Additions. J Therm Spray Tech 23, 708–715 (2014). https://doi.org/10.1007/s11666-014-0077-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-014-0077-2

Keywords

Navigation