Skip to main content
Log in

Heat and Mass Transfer Within an Evaporating Solution Droplet in a Plasma Jet

  • Peer-Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Solution precursors have been injected into the plasma gases to produce finely structured ceramic coatings with nano- and sub-micrometric features. The trajectory history and heat and mass transfer within individual solution droplets play a very important role in determining the coating microstructure. A mathematical model is developed to analyse the thermal behavior of individual precursor droplets travelling in the high temperature plasma jet. This model involves the motion and evaporation of the precursor droplet in a DC plasma jet and the heat and mass transfer within the evaporating droplet. The influence of Stefan flow, as well as the variable thermo-physical properties of the solution and the plasma gas, is considered. The internal circulation due to the relative velocity between the droplet and the plasma jet, which may be approximated by the Hill vortex, is considered as well. The trajectory, temporal droplet surface temperature, and radius variation are predicted. The temporal temperature and concentration distributions within the evaporating droplet are presented for different injection parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A r :

averaging parameter

B T, B M :

Spalding heat and mass transfer numbers

C D :

droplet drag coefficient

C P :

specific heat (J/kg·°C)

D :

mass diffusivity of the vapor into the plasma (m2/s)

L :

latent heat of vaporization (J/kg)

\( {\dot{\text{m}}} \) :

vaporization rate (kg/s)

m v :

mass fractions of vapor

M :

molecular weight (kg/kmol)

Nu :

Nusselt number

P :

pressure (Pa)

Pe:

Peclet number

Pr:

Prandtl number

Q g :

heat transfer from the plasma gas to drop surface (J/s)

Q i :

heat conduction from droplet surface into its interior (J/s)

r :

radius (m)

Re :

Reynolds number

Sh :

Sherwood number

T :

temperature (K)

t :

time (s)

U :

velocity in axial direction (m/s)

V :

velocity in radial direction (m/s)

ρ:

density (kg/m3)

λ:

thermal conductivity (w/m·k)

μ:

dynamic viscosity (kg/m·s)

g:

gas mixture

l:

liquid

s:

surface

v:

vapor

∞:

far from the droplet

References

  1. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10, p 44-66

    Article  CAS  Google Scholar 

  2. P. Fauchais, G. Montavon, R. Lima, and B. Marple, Engineering a New Class of Thermal Spray Nano-Based Microstructures from Agglomerated Nanostructured Particles, Suspensions and Solutions: An Invited Review, J. Phys. D Appl. Phys., 2011, 44, p 1-53

    Google Scholar 

  3. J. Karthikeyan, C. Berndt, S. Reddy, J. Wang, A. King, and H. Herman, Nanomaterial Deposits Formed by DC Plasma Spraying of Liquid Feedstocks, J. Am. Ceram. Soc., 1998, 81, p 121-128

    Article  CAS  Google Scholar 

  4. N. Padture, K. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E. Jordan, and M. Gell, Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution-Precursor Plasma Spray, Acta Mater., 2001, 49, p 2251-2257

    Article  CAS  Google Scholar 

  5. Y. Shan, T. Coyle, and J. Mostaghimi, Modeling the Influence of Injection Modes on the Evolution of Solution Sprays in a Plasma Jet, J. Therm. Spray Technol., 2010, 19, p 248-254

    Article  Google Scholar 

  6. A. Ozturk and B. Cetegen, Modeling of Plasma Assisted Formation of Precipitates in Zirconium Containing Liquid Precursor Droplets, Mater. Sci. Eng. A, 2004, 384, p 331-351

    Google Scholar 

  7. A. Ozturk and B. Cetegen, Modeling of Axially and Transversely Injected Precursor Droplets into a Plasma Environment, Int. J. Heat Mass Transf., 2005, 48, p 4367-4383

    Article  CAS  Google Scholar 

  8. L. Xie, X. Ma, E. Jordan, N. Padture, D. Xiao, and M. Gell, Deposition of Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Mater. Sci., 2004, 39, p 1639-1646

    Article  CAS  Google Scholar 

  9. T. Chien and T. Coyle, Rapid and Continuous Deposition of Porous Nanocrystalline SnO2 Coating with Interpenetrating Pores for Gas Sensor Applications, J. Therm. Spray Technol., 2007, 16, p 886-892

    Article  CAS  Google Scholar 

  10. T. Coyle and Y. Wang, Solution Precursor Plasma Spray of Nickel-Yittia Stabilized Zirconia Anodes for Solid Oxide Fuel Cell Application, J. Therm. Spray Technol., 2007, 16, p 898-904

    Article  Google Scholar 

  11. T. Coyle and Y. Wang, Solution Precursor Plasma Spray of Porous La1−x Sr x MnO3 Perovskite Coatings for SOFC Cathode Application, J. Fuel Cell Sci. Technol., 2011, 8, p 021005

    Article  Google Scholar 

  12. Y. Shan, T. Coyle, and J. Mostaghimi, 3D Modeling of Transport Phenomena and the Injection of the Solution Droplets in the Solution Precursor Plasma Spraying, J. Therm. Spray Technol., 2007, 16, p 736-743

    Article  CAS  Google Scholar 

  13. S. Basu and B. Cetegen, Modeling of Thermo-Physical Processes in Liquid Ceramic Precursor Droplets Injected into a Plasma Jet, Int. J. Heat Mass Transf., 2007, 50, p 3278-3290

    Article  CAS  Google Scholar 

  14. S. Basu, E. Jordan, and B. Cetegen, Fluid Mechanics and Heat Transfer of Liquid Precursor Droplets Injected into High-Temperature Plasmas, J. Therm. Spray Technol., 2008, 17, p 60-72

    Article  Google Scholar 

  15. B. Cetegen and S. Basu, Review of Modeling of Liquid Precursor Droplets and Particles Injected into Plasmas and High Velocity Oxy-Fuel (HVOF) Flame Jets for Thermal Spray Applications, J. Therm. Spray Technol., 2009, 18, p 769-793

    Article  CAS  Google Scholar 

  16. J. Fazilleau, C. Delbos, V. Rat, J. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying, Part 1: Suspension Injection and Behavior, Plasma. Chem. Plasma Process., 2006, 26, p 371-391

    Article  CAS  Google Scholar 

  17. Y. Shan, T. Coyle, and J. Mostaghimi, Numerical Simulation of Droplet Breakup and Collision in the Solution Precursor Plasma Spraying, J. Therm. Spray Technol., 2007, 16, p 698-704

    Article  CAS  Google Scholar 

  18. C. Marchand, A. Vardelle, G. Mariaux, and P. Lefort, Modeling of the Plasma Spray Process with Liquid Feedstock Injection, Surf. Coat. Technol., 2008, 202, p 4458-4464

    Article  CAS  Google Scholar 

  19. S. Prakash and W. Sirignano, Theory of Convective Droplet Vaporization with Unsteady Heat Transfer in the Circulating Liquid Phase, Int. J. Heat Mass Transf., 1980, 23, p 253-268

    Article  CAS  Google Scholar 

  20. B. Abramzon and W. Sirignano, Droplet Vaporization Model for Spray Combustion Calculations, Int. J. Heat Mass Transf., 1989, 32, p 1605-1618

    Article  CAS  Google Scholar 

  21. G.M. Faeth, Current Status of Droplet and Liquid Combustion, Prog. Energy Combust. Sci., 1977, 3, p 191-224

    Article  CAS  Google Scholar 

  22. A. Tong and W. Sirignano, Multicomponent Droplet Evaporation in a High Temperature Gas, Combust. Flame, 1986, 66, p 221-235

    Article  CAS  Google Scholar 

  23. M. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas Fundamentals and Applications, Plenum Press, New York and London, 1994

    Google Scholar 

  24. I. Castillo and R. Munz, Transient Modeling of Heat, Mass and Momentum Transfer of an Evaporating Cerium Nitrate Solution Droplet with a Surrounding Shell in a RF Thermal Argon-Oxygen Plasma Under Reduced Pressure, Int. J. Heat Mass Transf., 2007, 50, p 4468-4487

    Article  CAS  Google Scholar 

  25. G. Jayanthi, S. Zhang, and G. Messing, Modeling of Solid Particle Formation During Solution Aerosol Thermolysis, Aerosol Sci. Technol., 1993, 19, p 478-490

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the National Natural Science Foundation of China (Project 50706027), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, and Shanghai Leading Academic Discipline Project (Project J50501) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanguang Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, Y., Hu, Y. Heat and Mass Transfer Within an Evaporating Solution Droplet in a Plasma Jet. J Therm Spray Tech 21, 676–688 (2012). https://doi.org/10.1007/s11666-011-9726-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-011-9726-x

Keywords

Navigation