Skip to main content
Log in

Liquid Precursor Plasma Spraying: Modeling the Interactions Between the Transient Plasma Jet and the Droplets

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Plasma spraying using liquid feedstock makes it possible to produce thin coatings (<100 μm) with more refined microstructures than in conventional plasma spraying. However, the low density of the feedstock droplets makes them very sensitive to the instantaneous characteristics of the fluctuating plasma jet at the location where they are injected. In this study, the interactions between the fluctuating plasma jet and droplets are explored by using numerical simulations. The computations are based on a three-dimensional and time-dependent model of the plasma jet that couples the dynamic behaviour of the arc inside the torch and the plasma jet issuing from the plasma torch. The turbulence that develops in the jet flow issuing in air is modeled by a large Eddy simulation model that computes the largest structures of the flow which carry most of the energy and momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.C. Berndt, A.H. King, T. Chraska, and J. Karthikeyan, Plasma Spray Synthesis of Nanomaterials, http://www.matscieng.sunysb.edu/ctsr/nuggets/nugget1/index.html, 1997

  2. P.F. Blazdell, S. Kuroda, Plasma Spraying of Submicron Ceramic Suspensions Using a Continuous Ink Jet Printer, Surf. Coat. Technol., 2000, 123, p 239-246

    Article  CAS  Google Scholar 

  3. C. Delbos, Understanding the Injection of Metal or Ceramics Suspensions in a DC plasma jet, Ph.D Thesis, in French, University of Limoges, France, 2004

  4. R. Etchart-Salas, V. Rat, J.F. Coudert, P. Fauchais, and G. Lafougère, Influence of Arc Instabilities on the Injection in Suspension Plasma Spraying, High Technol. Plasma Processes, 2006, 9, May 29-June 4 (St-Petersburg, Russia)

  5. A. Ozturk, B.M. Cetegen, Modeling of Plasma Assisted Formation of Precipitates in Zirconium Containing Liquid Precursors Droplets, Mater. Sci Eng., 2004, A384, p 331-351

    CAS  Google Scholar 

  6. L. Xie, X. Ma, E.H. Jordan, N.P. Padture, M. Gell, Deposition of Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Mater. Sci., 2004, 39, p 1639-1646

    Article  CAS  Google Scholar 

  7. J. Oberste Berghaus, S. Bouaricha, J.G. Legoux, and C. Moreau, Injection Conditions and in-flight Particles States in Suspension Plasma Spraying of Alumina and Zirconia Nano-ceramics, Thermal Spray 2005: Advances in Technology and Application, ASM International, 2005, May 2-4 (Basel, Switzerland), ASM International

  8. M. Gell, Application Opportunities for Nanostructured Materials and Coatings, Mater. Sci. Eng., 1995, A204, p 246-251

    CAS  Google Scholar 

  9. R. Benocci, R. Florio, A. Galassi, M. Paolicchio, M. Piselli, C. Sala, M. Sciascia, E. Sindoni, Experimental Study for the Optimization of Plasma Torch Operations, Eur. Phys. J., 1999, D6, p 269-279

    Google Scholar 

  10. E. Moreau, C. Chazelas, G. Mariaux, and A. Vardelle, Modeling the Restrike Mode Operation of a DC Plasma Spray Torch, J. Thermal. Spray Technol., 2006, 15(4), p 524-530

    Article  Google Scholar 

  11. N. Singh, M. Razafinimanana, A. Gleizes, The Effect of Pressure on a Plasma Plume: Temperature and Electron Density Measurements, J. Phys. D: Appl. Phys., 1998, 31, p 2921-2928

    Article  CAS  Google Scholar 

  12. M. Boulos, P. Fauchais, E. Pfender, Thermal Plasmas: Fundamental and Applications, Vol. 1, Plenum Press, New York, 1994, p 33-43

    Google Scholar 

  13. P. Sagaut, Introduction to Large Eddy Scale Simulations for the Modeling of Uncompresible Flows, in French, Mathématiques et Applications, 1998, Vol. 30, Springer-Verlag

  14. F. Archambeau, N. Méchitoua, M. Sakiz, Code_Saturne: A Finite Volume Code for the Computation of Turbulent Incompressible Flows—Industrial Applications, Int. J. Finite Vol., 2004, 1(1), p 1-62

    Google Scholar 

  15. G. Mariaux, A. Vardelle, 3-D Modeling of the Plasma Spray Process. Part: 1 Flow Modeling, Int. J. Therm. Sci., 2005, 44, p 357-366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vardelle.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchand, C., Chazelas, C., Mariaux, G. et al. Liquid Precursor Plasma Spraying: Modeling the Interactions Between the Transient Plasma Jet and the Droplets. J Therm Spray Tech 16, 705–712 (2007). https://doi.org/10.1007/s11666-007-9112-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9112-x

Keywords

Navigation