Skip to main content

Advertisement

Log in

Modeling of an Inductively Coupled Plasma for the Synthesis of Nanoparticles

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Among other methods, inductively coupled plasma (ICP) torches can be used for the synthesis of nanoparticles. In this process, the precursor material is vaporized in the first step in the plasma core. In the second step, nucleation and condensation occur in the synthesis chamber where the plasma gets colder and high-purity nanoparticles are synthesized, the growth of which is stopped by gas quenching. From their low velocity and high temperature, induction plasmas are particularly adapted for this application. Numerical modeling is a good way to achieve a better knowledge and understanding of the process since non-intrusive diagnostics are fairly difficult to implement. In the present article, a two-dimensional model of an ICP torch was developed and validated on the basis of comparisons with data obtained by some other authors. Finally, the current frequency (13.56 MHz), pressure level (0.04 MPa), and gas flow rates were adjusted for the specific conditions of nanoparticles synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.L. Girshick, and C.P. Chiu, Homogenous Nucleation of Particles from the Vapor Phase in Thermal Plasma Synthesis, Plasma Chem. Plasma Proc., 1989, 9 (3), p 355–359

    Article  CAS  Google Scholar 

  2. S.L. Girshick, C.P. Chiu, R. Muno, C.Y. Wu, L. Yang, S.K. Sing, and P.H. McMurry, Thermal Plasma Synthesis of Ultrafine Iron Particles, J. Aerosol Sci., 1993, 24 (3), p 367–382

    Article  CAS  Google Scholar 

  3. P. Proulx, and J.-F. Bilodeau, A Model for Ultrafine Powder Production in a Plasma Reactor, Plasma Chem. Plasma Proc., 1991, 11 (3), p 371–386

    Article  CAS  Google Scholar 

  4. J.-F. Bilodeau, and P. Proulx, A Mathematical Model for Ultrafine Iron Powder Growth in a Thermal Plasma, Aerosol Science and Technology, 1996, 24, p 175–189

    Article  CAS  Google Scholar 

  5. M. Desilets, J.-F. Bilodeau, and P. Proulx, Modelling of the Reactive Synthesis of Ultra-Fine Powders in a Thermal Plasma Reactor, J. Phys. D: Appl. Phys., 1997, 30, p 1951–1960

    Article  CAS  Google Scholar 

  6. N. Rao, S. Girshick, J. Heberlein, P. McMurry, S. Jones, D. Hansen, and B. Micheel, Nanoparticle Formation Using a Plasma Expansion Process, Plasma Chem. Plasma Process., 1995, 15 (4), p 581–606

    Article  CAS  Google Scholar 

  7. N. Rao, B. Micheel, D. Hansen, C. Faudrey, M. Bench, S. Girshick, J. Heberlein, and P. McMurry, Synthesis of Nanophase Silicon, Carbon and Silicon Carbide Powders using a Plasma Expansion Process, J. Mater. Res., 1995, 10 (8), p 2073–2084

    Article  CAS  Google Scholar 

  8. M.I. Boulos, Flow Temperature Fields in the Fire-ball of an Inductively Coupled Plasma, IEEE Transactions on Plasma Science, 1976, 4, p 28–39

    Article  Google Scholar 

  9. J. Mostaghimi, and M.I. Boulos, Two-dimensional Electromagnetic Field Effects in Induction Plasma Modelling, Plasma Chem. Plasma Process., 1989, 9, p 25–44

    Article  Google Scholar 

  10. B.W. Yu, and S.L. Girshick, Modeling Inductively Coupled Plasmas: the Coil Current Boundary Condition, J. Appl. Phys., 1991, 69 (2), p 656–661

    Article  Google Scholar 

  11. S. Xue, P. Proulx, and M.I. Boulos, Extended-field Electromagnetic Model for Inductively Coupled Plasma, J. Phys. D: Appl. Phys., 2001, 34, p 1897–1906

    Article  CAS  Google Scholar 

  12. D. Bernardi, V. Colombo, E. Ghedini, and A. Mentrelli, Three-dimensional Modelling of Inductively Coupled Plasma Torches, Eur. Phys. J. D, 2003, 22, p 119–125

    Article  CAS  Google Scholar 

  13. D. Bernardi, V. Colombo, E. Ghedini, and A. Mentrelli, Three-dimensional Effects in the Modelling of ICPTs - Part I: Fluid Dynamics and Electromagnetics, Eur. Phys. J. D, 2003, 25, p 271–277

    Article  CAS  Google Scholar 

  14. M. Shigeta, T. Sato, and H. Nishiyama, Numerical Simulation of Potassium-Seeded Turbulent RF Inductively Coupled Plasma with Particles, Thin Solid Films, 2003, 435, p 5–12

    Article  CAS  Google Scholar 

  15. M. Shigeta, T. Sato, and H. Nishiyama, Computational Simulation of Particle-laden RF Inductively Coupled Plasma with Seeded Potassium, Int. J. Heat Mass Transfer, 2004, 47, p 707–716

    Article  CAS  Google Scholar 

  16. M. Shigeta, T. Watanabe, and H. Nishiyama, Numerical Investigation of Nanoparticle Synthesis in an RF Inductively Coupled Plasma, Thin Solid Films, 2004, 457, p 192–200

    Article  CAS  Google Scholar 

  17. M. Shigeta, and H. Nishiyama, Numerical Analysis of Metallic Nanoparticle Synthesis using RF Inductively Coupled Plasma Flows, J. Heat Transfer, 2005, 127, p 1222–1230

    Article  CAS  Google Scholar 

  18. D. Bernardi, V. Colombo, E. Ghedini, and A. Mentrelli, Comparison of Different Techniques for the FLUENT-based Treatment of the Electromagnetic Field in Inductively Coupled Plasma Torches, Eur. Phys. J. D, 2003, 27, p 55–72

    Article  CAS  Google Scholar 

  19. R. Bolot, C. Schreuders, M. Leparoux, S. Siegmann, and C. Coddet, Modélisation de la synthèse de nanoparticules par plasma d’induction haute fréquence (Modeling of Nanoparticle Synthesis with a High Frequency Inductively Coupled Plasma), Proc. of MATERIAUX 2006, November 13-17, Dijon, France (in French)

  20. B.M. Goortani, P. Proulx, S. Xue, and N.Y. Mendoza-Gonzalez, Controlling Nanostructure in Thermal Plasma Processing: Moving from Highly Aggregated Porous Structure to Spherical Silica Nanoparticles, Powder Technol., 2007, 175, in press

  21. R. Bolot, “Modélisation des plasmas d’arc soufflé : Application à la projection de matériaux pulvérulents (Modeling of Blown Arc Plasmas – Application to Thermal Spray of Powders),” PhD thesis, Université de Franche-Comté, France, 1999 (in French)

  22. A.T.M. Wilbers, J.J. Beulens, and D.C. Schram, Radiative Energy Loss in a Two-Temperature Argon Plasma, J. Quant. Spectrosc. Radiat. Transfer, 1991, 46, p 385–392

    Article  CAS  Google Scholar 

  23. A. Essoltani, P. Proulx, M. I. Boulos, and A. Gleizes, Radiation and Self-absorption in Argon – Iron Plasmas at Atmospheric Pressure, Journal of Analytical Atomic Spectroscopy, 1990, 5, p 543–547

    Article  CAS  Google Scholar 

  24. P. Proulx, J. Mostaghimi, and M.I. Boulos, Radiative Energy Transfer in Induction Plasma Modelling, Int. J. Heat Mass Transfer, 1991, 34 (10), p 2571–2579

    Article  CAS  Google Scholar 

  25. A. Essoltani, P. Proulx, M.I. Boulos, and A. Gleizes, Effect of the Pressure of Iron Vapors on the Volumetric Emission of Ar/Fe and Ar/Fe/H2 Plasmas, Plasma Chem. Plasma Proc., 1994, 14 (3), p 301–315

    Article  CAS  Google Scholar 

  26. A. Essoltani, P. Proulx, M. I. Boulos, and A. Gleizes, Volumetric Emission of Argon Plasmas in the Presence of Vapors of Fe, Si, and AI, Plasma Chem. Plasma Proc., 1994, 14 (4), p 437–450

    Article  CAS  Google Scholar 

  27. M. Leparoux, C. Schreuders, J.W. Shin, and S. Siegmann, Induction plasma synthesis of carbide nanopowders, Adv. Eng. Mater., 2005, 7, p 349–353

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Bolot.

Additional information

This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolot, R., Coddet, C., Schreuders, C. et al. Modeling of an Inductively Coupled Plasma for the Synthesis of Nanoparticles. J Therm Spray Tech 16, 690–697 (2007). https://doi.org/10.1007/s11666-007-9078-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9078-8

Keywords

Navigation