Skip to main content
Log in

Laser Shock Flier Impact Simulation of Particle-Substrate Interactions in Cold Spray

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Coating-substrate adhesion in cold spray is a paramount property, the mechanisms of which are not yet well elucidated. To go into these mechanisms, due to the intrinsic characteristics of the cold spray process (particle low-temperature and high velocity) direct observation and control of inflight particles and related phenomena cannot be done easily. For this reason, an experimental simulation of the particle-substrate reactions at the particle impingement was developed. This simulation is based on original flier impact experiments from laser shock acceleration. Relevant interaction phenomena were featured and studied as a function of shearing, plastic deformation, phase transformation primarily. These phenomena were shown to be similar to those involved in cold spray. This was ascertained by the study of the Cu-Al metallurgically reactive system using SEM, TEM, EPMA, and energy balance and diffusion calculations. This simulation could also be used to feed finite element modeling of cold spray and laser shock flier impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Gärtner, H. Kreye, T. Schmidt, T. Stoltenhoff, and H. Assadi, Bonding Mechanisms and Applications of Cold Spraying, Surface Modification Technologies 18, T.S. Sudarshan, M. Jeandin, and J.J. Stiglich, Eds., Nov 15-17, 2004 (Dijon), IoM, London, UK, 2006, p 35-43

  2. R.C. McCune, A.N. Papyrin, J.N. Hall, W.L. Riggs, and P.H. Zajchowski, An Exploration of the Cold Gas-Dynamic Spray Method for Several Materials Systems, Advances in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, Eds., Sep 11-15, 1995 (Houston, TX), ASM International, 1995, p 1-5

  3. S.V. Klinkov, V.F. Kosarev, M. Rein, Cold Spray Deposition: Significance of Particle Impact Phenomena, Aerospace Sci. Technol., 2005, 9, 582-591

    Article  CAS  Google Scholar 

  4. H. Fukanuma and N. Ohno, A Study of Adhesive Strength of Cold Spray Coatings. Thermal Spray 2004: Advances in Technology and Application, ASM International, May 10-12, 2004 (Osaka, Japan), 6 p

  5. T.H. Van Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs, P.H. Zajchowski, B. Pilsner, R.C. McCune, K.J. Barnett, Kinetic Spray Coatings, Surf. Coat. Technol., 1999, 111, 62-71

    Article  Google Scholar 

  6. Chang-Jiu Li, Wen-Ya Li, and Xi’an, Impact Fusion Phenomenon during Cold Spraying of Zinc, op. cit. ref. 4, 6 p

  7. M. Grujicic, C.L. Zhao, W.S. DeRosset, D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Design, 2004, 25, 681-688

    Article  CAS  Google Scholar 

  8. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, D. Helfritch, Computational Analysis of the Interfacial Bonding between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219, 211-227

    Article  CAS  Google Scholar 

  9. H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, 4379-4394

    Article  CAS  Google Scholar 

  10. R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8, 559-564

    Article  CAS  Google Scholar 

  11. T. Schmidt, F. Gärtner, and H. Kreye, Bonding Mechanisms and Critical Impact Velocity in the Cold Spray Process, Cold Spray 2004: An Emerging Spray Coating Technology, ASM International, 2004, CD-Rom

  12. T. Schmidt, F. Gärtner, and H. Kreye, High Strain Rate Deformation Phenomena in Explosive Powder Compaction and Cold Gas Spraying, Thermal Spray 2003, Advancing the Science & Applying the Technology, B.R. Marple and C. Moreau, Eds., May 5-8, 2003 (Orlando, FL), ASM International, 2003, p 9-18

  13. T. Schmidt, F. Gärtner, H. Assadi, H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, 729-742

    Article  CAS  Google Scholar 

  14. M. Boustie, M. Arrigoni, J. Jerome, L. Berthe, C. Bolis, M. Jeandin, and S. Barradas, The Flier Laser Shock Adhesion Test (F-LASAT) as an Extension of the LASAT Test for Coating/Substrate Systems Thickness above the Millimetric Range, op. cit. ref. 1, p 271-275

  15. S. Barradas, R. Molins, M. Jeandin, M. Arrigoni, M. Boustie, C. Bolis, L. Berthe, M. Ducos, Application of Laser Shock Adhesion Testing (LASAT) to the Study of the Interlamellar Strength and Coating-Substrate Adhesion in Cold-Sprayed Coating Systems, Surf. Coat. Technol., 2005, 197, 18-27

    Article  CAS  Google Scholar 

  16. B. Dubrujeaud, M. Jeandin, Cladding by Laser Shock Processing, J. Mater. Sci. Lett., 1994, 13, 773-775

    Article  CAS  Google Scholar 

  17. F.A. Calvo, A. Urena, J.M.G Salazar, F. Molleda, Special Features of the Formation of the Diffusion Bonded Joints between Copper and Aluminium, J. Mater. Sci., 1988, 23, 2273-2280

    Article  CAS  Google Scholar 

  18. T. Stoltenhoff, H. Kreye, H.J. Richter, An Analysis of the Cold Spray Process and its Coatings, J. Therm. Spray Technol., 2002, 11, 542-550

    Article  CAS  Google Scholar 

  19. H. Kreye, T. Schmidt, F. Gärtner, and T. Stoltenhoff, The Cold Spray Process and its Optimization, ITSC 2006: Building on 100 years of Success, B.R. Marple, Ed., May 15-18, 2006, (Seattle, Washington) 2006

  20. A.A. Akbari Mousavi, S.J. Burley, S.T.S. Al-Hassani, Simulation of Explosive Welding Using the Williamsburg Equation of State to Model Low Detonation Velocity Explosives, Int. J. Impact Eng., 2005, 31, 719-734

    Article  Google Scholar 

  21. G.R. Johnson and W.H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, 7th Int. Symp. on Ballistics, 1983, (The Hague), p 541-547

  22. C. Bolis, L. Berthe, M. Boustie, M. Arrigoni, H.L. He, M. Jeandin, and S. Barradas, Visar Pull-Back Signals as a Diagnostics for the Laser Adherence Test Applied to Copper Coating on Aluminium Substrate, AIP Conf. Proc, Shock Compression of Condensed Matter, 706, 2004, p 1373-1376

  23. I.M. Hutchings, A Model for the Erosion of Metals by Spherical Particles at Normal Incidence, Wear, 1981, 70, 269-281

    Article  CAS  Google Scholar 

  24. “Smithells Metals Reference Book,” E.A. Brandes, Ed., G.B. Brook, Butterworth, 1992

  25. C. Jayaram, R. Ravi, R.P. Chhabra, Calculation of Self-diffusion Coefficients in Liquid Metals Based on Hard Sphere Diameters Estimated from Viscosity Data, Chem. Phys. Lett., 2001, 341, 179-184

    Article  CAS  Google Scholar 

  26. A.S. Chauhan, R. Ravi, R.P. Chhabra, Self-diffusion in Liquid Metals, Chem. Phys., 2000, 252, 227-236

    Article  CAS  Google Scholar 

  27. H.J.V. Tyrrell, Diffusion and Viscosity in the Liquid Phase, Sci. Prog., 1981, 67, 271-293

    CAS  Google Scholar 

  28. Y. Adda and J. Philibert, “La Diffusion dans les Solides,” PUF, (Paris), Vol 2, 1966, (in French)

  29. S. Barradas, F. Borit, V. Guipont, M. Jeandin et al., Study of the Role of (Cu,Al) Intermetallics on Adhesion of Copper Plasma-sprayed on to Aluminum Using Laser Shock Adhesion Testing (LASAT), International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Eds., March 4-6, 2002 (Essen, Germany), DVS Deutscher Verband für Schweiben, 2002, p 592-597

  30. V.V. Sobolev, J.M. Guilemany, J. Nutting, J.R. Miquel, Development of Substrate-coating Adhesion in Thermal Spraying, Int. Mater. Rev., 1997, 42, 117-136

    CAS  Google Scholar 

  31. T.Z. Blazynski, Explosive Welding, Forming and Compaction, Chapter 6, Applied Sci. Publishers, 1989, p 189-210

  32. M. Ducos, B. Bossuat, H. Walaszek, S. Barradas, M. Jeandin, M. Arrigoni, M. Boustie, C. Bolis, and L. Berthe, Non Destructive Adhesion Testing of Plasma-sprayed Coatings Using Ultrasounds and Laser Shocks, op. cit. ref. 4, 6 p

Download references

Acknowledgments

This work was supported by French Ministry of Education and Research (MENRT), which is gratefully acknowledged. The authors would like to thank Mr. G. Barbezat from SULZER METCO (Wohlen, Suisse), Mrs. F. Le Strat from GIE REGIENOV (Guyancourt,France), Mrs. B. Dumont from KME/TREFIMETAUX (Sérifontaine, France), and Mr. R. Gole form APS PLETECH (Marne la Vallée, France) for financial support and helpful discussions. Many thanks also to Mrs. N. De Dave, Mr. G. Frot, and Mrs O. Adam from the “Ecole des Mines de Paris” for technical assistance. The Linde and CGT companies (Germany) is also greatly acknowledged for the supplying of cold sprayed coupons and consumables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jeandin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barradas, S., Guipont, V., Molins, R. et al. Laser Shock Flier Impact Simulation of Particle-Substrate Interactions in Cold Spray. J Therm Spray Tech 16, 548–556 (2007). https://doi.org/10.1007/s11666-007-9069-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-007-9069-9

Keywords

Navigation