Skip to main content

Advertisement

Log in

Study on Tensile Properties of 3D Porous Lattice Structures Based on Cube Truss Cells

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Digital light processing (DLP) is a forming method that exhibits high forming speed and precision characteristics and can be used to fabricate microstructures. Therefore, in this study, a flexible, elastic, and photosensitive resin is prepared using the DLP forming method. Furthermore, a novel three-dimensional porous lattice structure is designed based on a cubic truss cell optimized by artificial topology. The influence of DLP printing parameters on the forming effect of the lattice structure is investigated, and a sample with complete structure and no blockage is prepared. The tensile properties of the lattice structure under different structures and different support rod diameters are studied using uniaxial tensile tests. The results show that the novel flexible, porous structure fabricated using DLP printing has clear internal pores, good connectivity, and the porosity and tensile fracture rates are greater than 80 and 85.6%, respectively, than those of the solid tensile spline. Lattice structure 3 exhibited the highest effective tensile toughness, so it has the best comprehensive tensile properties. In addition, the tensile stress of the structure decreased and the tensile fracture rate increased with an increase in the diameter of the single-cell strut. In summary, the structure can be employed in flexible electrodes, fragile clamping materials, and buffer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Q.S. Liu, Introduction to Porous Materials, Tsinghua University Press, Beijing, 2012.

    Google Scholar 

  2. H.B. Wu, B. Yuan, J.S. Han et al., Research Process of Porous Ceramics Materials Preparation, Refractories, 2012, 46(3), p 230. ((in Chinese))

    CAS  Google Scholar 

  3. Y. Amani, A. Takahashi, P. Chantrenne et al., Thermal Conductivity of Highly Porous Metal Foams: Experimental and Image Based Finite Element Analysis, Int. J. Heat Mass Transf., 2018, 122, p 1.

    Article  CAS  Google Scholar 

  4. H. Mehboob, A. Mehboob, F. Abbassi, F. Ahmad, A.S. Khan, and S. Miran, Bioinspired Porous Dental Implants Using the Concept of 3D Printing to Investigate the Effect of Implant Type and Porosity on Patient’s Bone Condition[J/OL], Mech. Adv. Mater. Struct., 2021 https://doi.org/10.1080/15376494.2021.1971347

    Article  Google Scholar 

  5. H. Mehboob, A. Mehboob, F. Abbassi, F. Ahmad, and S.H. Chang, Finite Element Analysis of Biodegradable Ti/Polyglycolic Acid Composite Bone Plates Based on 3D Printing Concept, Compos. Struct., 2022, 289, p 115521. https://doi.org/10.1016/j.compstruct.2022.115521

    Article  CAS  Google Scholar 

  6. J. Xiong, Design and Mechanical Behavior of Lightweight Composite Innovative Lattice Truss Structures, Harbin Inst. Technol., 2013, 132, p 171. https://doi.org/10.7666/d.D01102813

    Google Scholar 

  7. L.J. Feng, Mechanical Properties and Strengthening Mechanism of a New Type of Hourglass Metal Lattice Structure, Harbin Inst. Technol., 2017, 134, p 589.

    Google Scholar 

  8. P. Kumar, K.H. Kim, A. Saneja, B. Wang, and M. Kukkar, Biological Hierarchically Structured Porous Materials (Bio-HSPMs) for Biomedical Applications, J. Porous Mater., 2019, 26(3), p 655–675.

    Article  CAS  Google Scholar 

  9. S. Zhang, Y.J. Ding, and S.J. Ying, Preparation and Mechanical Properties of Microporous NC/TEGN/RDX Composites, Energetic Mater., 2019, 27(03), p 210–215.

    CAS  Google Scholar 

  10. H.K. Wang, X.F. Peng, and F. Liu, Facile Preparation of Super Lightweight and Highly Elastic Thermoplastic Polyurethane Bead Blend Foam With Microporous Segregated Network Structure for Good Interfacial Adhesion, J. Supercrit. Fluids, 2022, 184, p 105568. https://doi.org/10.1016/j.supflu.2022.105568

    Article  CAS  Google Scholar 

  11. J.W. Lu, K.X. Zhang, X. Yu, S.F. Yan, and J.B. Yi, Preparation of Aminolysis Modified Poly L-Benzyl Glutamate Guided Bone Regeneration Membrane, Chem. J. Chinese Univ., 2019, 40(03), p 601–611.

    CAS  Google Scholar 

  12. H.H. Chang, L.C. Yao, D.J. Lin, and L.P. Cheng, Preparation of Microporous Poly(VDF-co-HFP) Membranes by Template-Leaching Method, Sep. Purif. Technol., 2010, 72(2), p 156–166.

    Article  CAS  Google Scholar 

  13. C. Darpentigny, P.R. Marcoux, M. Menneteau, B. Michel, F. Ricoul, B. Jean, J. Bras, and G. Nonglaton, Antimicrobial Cellulose Nanofibril Porous Materials Obtained by Supercritical Impregnation of Thymol, Acs Applied Bio Mater., 2020, 3(5), p 2965–2975.

    Article  CAS  Google Scholar 

  14. C.C. Zhou, K. Yang, K.F. Wang et al., Combination of Fused Depos-Ition Modeling and Gas Foaming Technique to Fabricated Hierarchical Macro/Microporous Polymer Scaffolds, Mater. Des., 2016, 109, p 415.

    Article  Google Scholar 

  15. J.P. Li, J.R.D. Wijn, K.C.A.V. Blitterswij et al., Porous Ti6Al4V Scaffold Directly Fabricating by Rapid Prototyping: Preparation and in vitro Experiment, Biomaterials, 2006, 27(8), p 1223.

    Article  CAS  Google Scholar 

  16. A.R. Damanpack, A. Sousa, and M. Bodaghi, Porous PLAs with Controllable Density by FDM 3D Printing and Chemical Foaming Agent, Micromachines, 2021, 12(8), p 866. https://doi.org/10.3390/mi12080866

    Article  Google Scholar 

  17. M.N. Zhou, M.Y. Li, J.J. Jiang, N. Gao, F.W. Tian, and W.T. Zhai, Construction of Bionic Porous Polyetherimide Structure by an in situ Foaming Fused Deposition Modeling Process, Adv. Eng. Mater., 2021, 24(3), p 2101027. https://doi.org/10.1002/adem.202101027

    Article  CAS  Google Scholar 

  18. L. Zhao, Z.L. Jiang, C. Zhang, and Z.X. Jiang, Development Model and Experimental Characterization of Residual Stress of 3D Printing PLA Parts With Porous Structure, Appl. Phys. A-Mater. Sci. Process., 2021, 127(2), p 98. https://doi.org/10.1007/s00339-020-04238-2

    Article  CAS  Google Scholar 

  19. E. Mackiewicz, T. Wejrzanowski, B. Adamczyk-Cieslak, and G.J. Oliver, Polymer-Nickel Composite Filaments for 3D Printing of Open Porous Materials, Materials, 2022, 15(4), p 1360. https://doi.org/10.3390/ma15041360

    Article  CAS  Google Scholar 

  20. R.G. Silva, M.J. Torres, J.Z. Vinuela, and A.G. Zamora, Manufacturing and Characterization of 3D Miniature Polymer Lattice Structures Using Fused Filament Fabrication, Polymers, 2019, 13(4), p 635. https://doi.org/10.1016/j.matdes.2019.108137,10.3390/polym13040635

    Article  CAS  Google Scholar 

  21. A. Harynska, I. Carayon, P. Kosmela, A. Brillowska-Dabrowska, M. Lapinski, J. Kucinska-Lipka, and H. Janik, Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures With Potential in Cancellous Bone Tissue Engineering, Materials, 2020, 13(19), p 4457. https://doi.org/10.3390/ma13194457

    Article  CAS  Google Scholar 

  22. A. Harynska, H. Janik, M. Sienkiewicz, B. Mikolaszek, and J. Kucinska-Lipka, PLA-Potato Thermoplastic Starch Filament as a Sustainable Alternative to the Conventional PLA Filament: Processing, Characterization, and FFF 3D Printing, Acs Sustain. Chem. Eng., 2021, 9(20), p 6923–6938.

    Article  CAS  Google Scholar 

  23. R.V. Baier, J.I.C. Raggio, C.T. Arancibia, M. Bustamante, L. Perez, I. Burda, A. Aiyangar, and J.F. Vivanco, Structure-Function Assessment of 3D-Printed Porous Scaffolds by a low-Cost/Open Source Fused Filament Fabrication Printer, Mater. Sci. Eng. C-Mater. Biol. Appl., 2021, 123, p 111945. https://doi.org/10.1016/j.msec.2021.111945

    Article  CAS  Google Scholar 

  24. L. Wang, X.F. Hu, X.Y. Ma et al., Promotion of Osteointegration Under Diabetic Conditions by Tantalum Coating-Based Surface Modification on 3-Dimensional Printed Porous Titanium Implants, Colloids Surf., B, 2016, 148, p 440.

    Article  CAS  Google Scholar 

  25. X. Li, C.T. Wang, W.G. Zhang et al., Fabrication and Characterization of Porous Ti6Al4V Parts for Biomedical Applications Using Electron Beam Melting Process, Mater. Lett., 2009, 63(3/4), p 403.

    Article  CAS  Google Scholar 

  26. J. Parthasarathy, B. Starly, S. Raman, and A. Christensen, Mechanical Evaluation of Porous Titanium (Ti6Al4V) Structures With Electron Beam Melting (EBM), J. Mech. Behav. Biomed. Mater., 2010, 3(3), p 249–259.

    Article  Google Scholar 

  27. Z.W. Liu, M.J. Qi, X.Y. Qin, D.W. Huang, X.Y. Zhang, and X.J. Yan, Compressive Properties of Electron Beam Melted Ti-6Al-4V Porous Meshes With Different Struts Distributions, Met. Mater. Int., 2020, 26(7), p 1060–1069.

    Article  CAS  Google Scholar 

  28. Y.J. Liu, S.J. Li, W.T. Hou, S.G. Wang, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang, Electron Beam Melted Beta-type Ti-24Nb-4Zr-8Sn Porous Structures With High Strength-to-Modulus Ratio, J. Mater. Sci. Technol., 2016, 32(6), p 505–508.

    Article  CAS  Google Scholar 

  29. Z.J. Jia, M. Li, P. Xiu, X.C. Xu, Y. Cheng, Y.F. Zheng, T.F. Xi, S.C. Wei, and Z.J. Liu, A Novel Cytocompatible, Hierarchical Porous Ti6Al4V Scaffold With Immobilized Silver Nanoparticles, Mater. Lett., 2015, 157, p 143–146. https://doi.org/10.1016/j.matlet.2015.05.084

    Article  CAS  Google Scholar 

  30. B.V. Krishna, S. Bose, and A. Bandyopadhyay, Fabrication of Porous NiTi Shape Memory Alloy Structures Using Laser Engineered Net Shaping, J. Biomed. Mater. Res. B Appl. Biomater., 2009, 89B(2), p 481.

    Article  CAS  Google Scholar 

  31. W.C. Xue, B.V. Krishna, A. Bandyopadhyay et al., Processing and Biocompatibility Evaluation of Laser Processed Porous Titanium, Acta Biomater., 2007, 3(6), p 1007.

    Article  CAS  Google Scholar 

  32. S. Roy, N. Khutia, D. Das, M. Das, V.K. Balla, A. Bandyopadhyay, and A.R. Chowdhury, Understanding Compressive Deformation Behavior of Porous Ti Using Finite Element Analysis, Mater. Sci. Engi. C-Mater. Biol. Appl., 2016, 64, p 436–443. https://doi.org/10.1016/j.msec.2016.03.066

    Article  CAS  Google Scholar 

  33. A. Bandyopadhyay, B.V. Krishna, W.C. Xue, and S. Bose, Application of Laser Engineered Net Shaping (LENS) to Manufacture Porous and Functionally Graded Structures for Load Bearing Implants, J. Mater. Sci.-Mater. Med., 2009, 20, p 29–34. https://doi.org/10.1007/s10856-008-3478-2

    Article  CAS  Google Scholar 

  34. X.G. Ji, J.A. Zhang, Y.H. Luan, X.X. Zhang, and H.T. Hu, Research on the Compression and Energy Absorption Performance of Skin-Like 3D Porous Lattice Structure, J. Mech. Eng., 2021, 57(15), p 222–230.

    Article  Google Scholar 

  35. S.K. Zhu, X.G. Ji, D.P. Liu, and X.M. He, Research on Cell Grid Configuration in Lightweight Design, Plastic Indus., 2017, 45(03), p 151–156.

    Google Scholar 

  36. Y.G. Zhou, J.R. Zou, H.H. Wu, and B.P. Xu, Balance Between Bonding and Deposition During Fused Deposition Modeling of Polycarbonate and Acrylonitrile-Butadiene-Styrene Composites, Polym. Compos., 2020, 41(1), p 60–72.

    Article  Google Scholar 

  37. D.L. Naik and R. Kiran, On Anisotropy, Strain Rate and Size Effects in Vat Photopolymerization Based Specimens, Addit. Manuf., 2018, 23, p 181–196.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52175234 and 51105175) and the “Six Talent Peaks” project of Jiangsu Province (JXQC-006). The authors are thankful for the support provided by the foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Xiaogang.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaogang, J., Lin, D., Wei, W. et al. Study on Tensile Properties of 3D Porous Lattice Structures Based on Cube Truss Cells. J. of Materi Eng and Perform 32, 3658–3667 (2023). https://doi.org/10.1007/s11665-022-07319-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07319-w

Keywords

Navigation