Skip to main content
Log in

Experimental Investigation and Numerical Simulation of Residual Stress and Distortion of Ti6Al4V Components Manufactured Using Selective Laser Melting

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Residual stress and distortion are inevitable during metal selective laser melting (SLM) process due to the high thermal gradient. Based on an experimental investigation and a numerical simulation, this paper studied the effect of geometric size and structural feature on the residual stress and distortion of hollow Ti-alloy blades fabricated using SLM. The results indicated that the distortion of blades increased with the increase in height and torsion angle of the blades. However, distortion obviously decreased when the stiffened plates were set inside the blades and the blade thickness increased. When the number of stiffened plates increased from zero to three and the blade thickness increased from 0.5 to 2 mm, the distortion value was reduced by the biggest rate of 38 and 35%, respectively. In addition, the residual stress along the building direction was found to play a dominant role in inducing the distortion. This study showed a new viewpoint to reduce the distortion by optimizing the geometric size and structural feature of a metal part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. Y.M. Wang, T. Voisin, J.T. Mckeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen and T.T. Roehling, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2017, 17, p 1.

    Google Scholar 

  2. W. Jin, C. Zhang, S. Jin, Y. Tian, D. Wellmann and W. Liu, Wire Arc Additive Manufacturing of Stainless Steels: A Review, Appl. Sci., 2020, 10(5), p 1563.

    Article  CAS  Google Scholar 

  3. D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392.

    Article  CAS  Google Scholar 

  4. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De and W. Zhang, Additive Manufacturing of Metallic Components: Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224.

    Article  CAS  Google Scholar 

  5. L. Zai, C. Zhang, Y. Wang, W. Guo, D. Wellmann, X. Tong and Y. Tian, Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review, Metals, 2020, 10(2), p 255.

    Article  Google Scholar 

  6. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928.

    Article  CAS  Google Scholar 

  7. Y. Yang, C. Zhang, D. Wang, L. Nie, D. Wellmann and Y. Tian, Additive Manufacturing of WC-Co Hardmetals: A Review, Int. J. Adv. Manuf. Technol., 2020, 108, p 1653–1673.

    Article  Google Scholar 

  8. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler and T.M. Pollock, 3D Printing of High-Strength Aluminium Alloys, Nature, 2017, 549(7672), p 365.

    Article  CAS  Google Scholar 

  9. T. Voisin, N.P. Calta, S.A. Khairallah, J.-B. Forien, L. Balogh, R.W. Cunningham, A.D. Rollett and Y.M. Wang, Defects-Dictated Tensile Properties of Selective Laser Melted Ti–6Al–4V, Mater. Des., 2018, 158, p 113–126.

    Article  CAS  Google Scholar 

  10. C. Li, C.H. Fu, Y.B. Guo and F.Z. Fang, Fast Prediction and Validation of Part Distortion in Selective Laser Melting, Proc. Manuf., 2015, 1, p 355–365.

    CAS  Google Scholar 

  11. D. Buchbinder, N. Pirch, K. Wissenbach, J. Schrage and W. Meiners, Investigation on Reducing Distortion by Preheating During Manufacture of Aluminum Components Using Selective Laser Melting, J. Laser Appl., 2014, 26(1), p 012004.

    Article  Google Scholar 

  12. A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos and W.E. King, An Experimental Investigation into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel, Metallurg. Mater. Trans. A, 2014, 45(13), p 6260–6270.

    Article  CAS  Google Scholar 

  13. J.-P. Kruth, J. Deckers, E. Yasa and R. Wauthlé, Assessing and Comparing Influencing Factors of Residual Stresses in Selective Laser Melting Using a Novel Analysis Method, Proc. Inst. Mech. Eng. Pt. B J. Eng. Manuf., 2012, 226(6), p 980–991.

    Article  Google Scholar 

  14. M.F. Zaeh and G. Branner, Investigations on Residual Stresses and Deformations in Selective Laser Melting, Prod. Eng., 2009, 4(1), p 35–45.

    Article  Google Scholar 

  15. E. Mirkoohi, D.E. Sievers, H. Garmestani, K. Chiang and S.Y. Liang, Three-Dimensional Semi-Elliptical Modeling of Melt Pool Geometry Considering Hatch Spacing and Time Spacing in Metal Additive Manufacturing, J. Manuf. Process., 2019, 45, p 532–543.

    Article  Google Scholar 

  16. R. Liu, S. Xu, X. Shao, Y. Wen, X. Shi, L. Huang, M. Hong, J. Hu and Z. Yang, Defect-Engineered NiCo-S Composite as a Bifunctional Electrode for High-Performance Supercapacitor and Electrocatalysis, ACS Appl. Mater. Interf., 2021, 13(40), p 47717–47727.

    Article  CAS  Google Scholar 

  17. A. Vasinonta, J.L. Beuth and M. Griffith, Process Maps for Predicting Residual Stress and Melt Pool Size in the Laser-Based Fabrication of Thin-Walled Structures, J. Manuf. Sci. Eng., 2007, 129(1), p 101–109.

    Article  Google Scholar 

  18. K. Dai and L. Shaw, Distortion minimization of laser-processed components through control of laser scanning patterns, Rapid Prototyp. J., 2002, 8(5), p 270–276.

    Article  Google Scholar 

  19. H. Ali, H. Ghadbeigi and K. Mumtaz, Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V, Mater. Sci. Eng. A, 2018, 712, p 175–187.

    Article  CAS  Google Scholar 

  20. M. Masoomi, S.M. Thompson and N. Shamsaei, Laser powder bed fusion of Ti–6Al–4V parts: thermal modeling and mechanical implications, Int. J. Mach. Tools Manuf., 2017, 118–119, p 73–90.

    Article  Google Scholar 

  21. Z. Tian, C. Zhang, D. Wang, W. Liu, X. Fang, D. Wellmann, Y. Zhao and Y. Tian, A review on laser powder bed fusion of inconel 625 nickel-based alloy, Appl. Sci., 2019, 10, p 81.

    Article  Google Scholar 

  22. Z. Li, R. Xu, Z. Zhang and I. Kucukkoc, The influence of scan length on fabricating thin-walled components in selective laser melting, Int. J. Mach. Tools Manuf., 2018, 126, p 1–12.

    Article  Google Scholar 

  23. T. Mukherjee, W. Zhang and T. Debroy, An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing, Comput. Mater. Sci., 2017, 126, p 360–372.

    Article  CAS  Google Scholar 

  24. J. Cao, M.A. Gharghouri and P. Nash, Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti–6Al–4V build plates, J. Mater. Process. Technol., 2016, 237, p 409–419.

    Article  CAS  Google Scholar 

  25. Y. Zhang, L. Yu, Z. Fang, N.N. Xiong, L. Zhang and H. Tian, An End-to-End Deep Learning Model for Robust Smooth Filtering Identification, Fut. Gener. Comput. Syst., 2022, 127, p 263–275.

    Article  Google Scholar 

  26. D. Gu and B. He, Finite Element Simulation and Experimental Investigation of Residual Stresses in Selective Laser Melted Ti–Ni Shape Memory Alloy, Comput. Mater. Sci., 2016, 117, p 221–232.

    Article  CAS  Google Scholar 

  27. R. Liu, S. Xu, X. Shao, Y. Wen, X. Shi, J. Hu and Z. Yang, Carbon Coating on Metal Oxide Materials for Electrochemical Energy Storage, Nanotechnology, 2021, 32(50), p 502004.

    Article  CAS  Google Scholar 

  28. M. Bugatti and Q. Semeraro, Limitations of the inherent strain method in simulating powder bed fusion processes, Addit. Manuf., 2018, 23, p 329–346.

    Google Scholar 

  29. L. Bass, J. Milner, T. Gnäupel-Herold, S. Moylan, Residual Stress in Additive Manufactured Nickel Alloy 625 Parts, J. Manuf. Sci. Eng. 140(6) (2018).

  30. S. Afazov, W.A. Denmark, B.L. Toralles, A. Holloway and A. Yaghi, Distortion Prediction and Compensation in Selective Laser Melting, Addit. Manuf., 2017, 17, p 15–22.

    Google Scholar 

  31. G. Shuang, Z. Tan, L. Lan and B. He, Effects of geometrical size and structural feature on the shape-distortion behavior of hollow Ti-alloy blade fabricated by additive manufacturing process, J. Laser Appl., 2020, 32, p 032005.

    Article  Google Scholar 

  32. K. Dai and L.L. Shaw, Finite element analysis of the effect of volume shrinkage during laser densification, Acta Mater., 2005, 53(18), p 4743–4754.

    Article  CAS  Google Scholar 

  33. A. Hussein, L. Hao, C. Yan and R.M. Everson, Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting, Mater. Des., 2013, 52, p 638–647.

    Article  CAS  Google Scholar 

  34. B.S. Yilbas and A.F.M. Arif, Material response to thermal loading due to short pulse laser heating, Int. J. Heat Mass Transf., 2001, 44(20), p 3787–3798.

    Article  CAS  Google Scholar 

  35. S.A. Tsirkas, P. Papanikos and T.B. Kermanidis, Numerical simulation of the laser welding process in butt-joint specimens, J. Mater. Process. Technol., 2003, 134(1), p 59–69.

    Article  CAS  Google Scholar 

  36. Z. Xiao, C. Chen, Z. Hu, H. Zhu and X. Zeng, Effect of rescanning cycles on the characteristics of selective laser melting of Ti6Al4V, Opt. Laser Technol., 2020, 122, p 105890.

    Article  CAS  Google Scholar 

  37. Y.C.S. Shunyu Liu, Additive manufacturing of Ti6Al4V alloy: a review, Mater. Des., 2019, 164, p 1–23.

    Google Scholar 

  38. H. Ali, L. Ma, H. Ghadbeigi and K. Mumtaz, In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V, Mater. Sci. Eng. A, 2017, 695, p 211–220.

    Article  CAS  Google Scholar 

  39. S. Gao, Z.J. Tan, L. Lan and B. He, Effects of geometrical size and structural feature on the shape-distortion behavior of hollow Ti-alloy blade fabricated by additive manufacturing process, J. Laser Appl., 2020, 32, p 3.

    Article  Google Scholar 

  40. G. Vastola, G. Zhang, Q. Pei and Y.W. Zhang, Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling, Add. Manuf., 2016, 12, p 231–239.

    CAS  Google Scholar 

  41. N.S. Bailey, W. Tan and Y.C. Shin, Predictive modeling and experimental results for residual stresses in laser hardening of AISI 4140 steel by a high power diode laser, Surf. Coat. Technol., 2009, 203(14), p 2003–2012.

    Article  CAS  Google Scholar 

  42. P. Mercelis and J. Kruth, Residual stresses in selective laser sintering and selective laser melting, Rapid Prototyp. J., 2006, 12(5), p 254–265.

    Article  Google Scholar 

  43. Y. Liu, Y. Yang and D. Wang, A study on the residual stress during selective laser melting (SLM) of metallic powder, Int. J. Adv. Manuf. Technol., 2016, 87(1), p 647–656.

    Article  Google Scholar 

  44. Z. Wang, E. Denlinger, P. Michaleris, A.D. Stoica, D. Ma and A.M. Beese, Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions, Mater. Des., 2017, 113, p 169–177.

    Article  CAS  Google Scholar 

  45. S. Afazov, W.A.D. Denmark, B. Lazaro Toralles, A. Holloway and A. Yaghi, Distortion prediction and compensation in selective laser melting, Addit. Manuf., 2017, 17, p 15–22.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Shanghai Sailing Program [19YF1417500] and Open Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University (SKLASS2020-10) and the Science and Technology Commission of Shanghai Municipality (No. 19DZ2270200)

Author information

Authors and Affiliations

Authors

Contributions

Shuang Gao*: Conceptualization, Methodology, Resources, Writing - review & editing, Supervision. Zhijun Tan: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data curation, Writing - original draft. Zhenfeng Song: Conceptualization, Formal analysis. Liang Lan: Conceptualization, Formal analysis. Bo He*: Conceptualization, Formal analysis, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Shuang Gao or Bo He.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Tan, Z., Lan, L. et al. Experimental Investigation and Numerical Simulation of Residual Stress and Distortion of Ti6Al4V Components Manufactured Using Selective Laser Melting. J. of Materi Eng and Perform 31, 8113–8123 (2022). https://doi.org/10.1007/s11665-022-06815-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06815-3

Keywords

Navigation