Skip to main content
Log in

Ethanol Monitoring Gas Sensor Based on Flower-Shaped Copper Sulfide by a Facile Hydrothermal Method for Marine Transportation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Flower-shaped CuS as a p-type gas-sensing material was synthesized by a facile hydrothermal method in this study. Morphology, structure, and chemical composition of the synthesized CuS gas-sensing material were analyzed by SEM, XRD, XPS, and N2 adsorption adsorption–desorption technique. Gas-sensing properties of the as-prepared CuS sensors were also investigated toward ethanol monitoring. The results showed that the flower-like CuS nanostructures consisted of interconnected nanosheets and exhibited good crystallinity. With the increase in ethanol concentration, the sensitivity of the CuS sensor significantly increased and indicated a roughly linear relationship at the optimal operating temperature of 260 °C. The ethanol-selective characteristics of the CuS sensor against other interfering gases including methanol, benzene, dichloromethane, and hexane were studied, and the gas response of the CuS sensor synthesized at 170 °C toward 100 ppm ethanol was 5.22, which was significantly higher than all the other gases. Moreover, 14-day continuous measurement further confirmed the excellent stability of the CuS sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Zhang, W. Deng, and W. Li, Statistical Properties of Links of Network: A Survey on the Shipping Lines of Worldwide Marine Transport Network, Phys. A, 2018, 502, p 218–227

    Article  Google Scholar 

  2. M.R. Rahman, J.T.S. Allan, M.Z. Ghavidel, L.E. Prest, F.S. Saleh, and E.B. Easton, The Application of Power-Generating Fuel Cell Electrode Materials and Monitoring Methods to Breath Alcohol Sensors, Sens. Actuators B, 2016, 228, p 448–457

    Article  CAS  Google Scholar 

  3. J. Xiao, C. Song, W. Dong, C. Li, Y. Yin, X. Zhang, and M. Song, Synthesis, Characterization, and Gas Sensing Applications of WO3 Nanobricks, J. Mater. Eng. Perform., 2015, 24, p 3026–3031

    Article  CAS  Google Scholar 

  4. R. Alrammouz, J. Podlecki, P. Abboud, B. Sorli, and R. Habchi, A Review on Flexible Gas Sensors: From Materials to Devices, Sens. Actuators A, 2018, 284, p 209–231

    Article  CAS  Google Scholar 

  5. A. Dey, Semiconductor Metal Oxide Gas Sensors: A Review, Mater. Sci. Eng. B, 2018, 229, p 206–217

    Article  CAS  Google Scholar 

  6. G. Korotcenkov and B.K. Cho, The Role of Grain Size on the Thermal Instability of Nanostructured Metal Oxides Used in Gas Sensor Applications and Approaches For Grain-Size Stabilization, Prog. Cryst. Growth Charact., 2012, 58, p 167–208

    Article  CAS  Google Scholar 

  7. X. Gao and T. Zhang, An Overview: Facet-Dependent Metal Oxide Semiconductor Gas Sensors, Sens. Actuators B, 2018, 277, p 604–633

    Article  CAS  Google Scholar 

  8. P.V. Tong, N.D. Hoa, H.T. Nha, N.V. Duy, C.M. Hung, and N.V. Hieu, SO2 and H2S Sensing Properties of Hydrothermally Synthesized CuO Nanoplates, J. Electron. Mater., 2018, 47, p 7170–7178

    Article  Google Scholar 

  9. C. Yang, X. Su, F. Xiao, J. Jian, and J. Wang, Gas Sensing Properties of CuO Nanorods Synthesized by a Microwave-Assisted Hydrothermal Method, Sens. Actuators B, 2011, 158, p 299–303

    Article  CAS  Google Scholar 

  10. C. Yang, F. Xiao, J. Wang, and X. Su, 3D Flower- and 2D Sheet-Like CuO Nanostructures: Microwave-Assisted Synthesis and Application in Gas Sensors, Sens. Actuators B, 2015, 207, p 177–185

    Article  CAS  Google Scholar 

  11. G. Korotcenkov and B.K. Cho, Metal Oxide Composites in Conductometric Gas Sensors: Achievements and Challenges, Sens. Actuators B, 2017, 244, p 182–210

    Article  CAS  Google Scholar 

  12. X. Wang, C. Tang, J. Liu, H. Zhang, and J. Wang, Ultra-small CuS Nanoparticles as Peroxidase Mimetics for Sensitive and Colorimetric Detection of Uric Acid in Human Serum, Chin. J. Anal. Chem., 2018, 46, p 1825–1831

    Article  CAS  Google Scholar 

  13. K. Jin, M. Zhou, H. Zhao, S. Zhai, F. Ge, Y. Zhao, and Z. Cai, Electrodeposited CuS Nanosheets on Carbonized Cotton Fabric as Flexible Supercapacitor Electrode for High Energy Storage, Electrochim. Acta, 2019, 295, p 668–676

    Article  CAS  Google Scholar 

  14. Z. Liu, S. Li, R. Wei, A. Chen, Y. Chai, R. Yuan, and Y. Zhuo, CuS Porous Nanospheres as a Novel Noble Metal-Free Co-reaction Accelerator for Enhancing Electrochemiluminescence and Sensitive Immunoassay of Mucin 1, Sens. Actuators B, 2018, 274, p 110–115

    Article  CAS  Google Scholar 

  15. J. Guo, X. Zhang, Y. Sun, X. Zhang, L. Tang, and X. Zhang, Double-Shell CuS Nanocages as Advanced Supercapacitor Electrode Materials, J. Power Sources, 2017, 355, p 31–35

    Article  CAS  Google Scholar 

  16. L. Qian, J. Mao, X. Tian, H. Yuan, and D. Xiao, In Situ Synthesis of CuS Nanotubes on Cu Electrode for Sensitive Nonenzymatic Glucose Sensor, Sens. Actuators B, 2013, 176, p 952–959

    Article  CAS  Google Scholar 

  17. F. Tao, Y. Zhang, S. Cao, K. Yin, X. Chang, Y. Lei, R. Fan, L. Dong, Y. Yin, and X. Chen, CuS Nanoflowers/Semipermeable Collodion Membrane Composite for High-Efficiency Solar Vapor Generation, Mater. Today Energy, 2018, 9, p 285–294

    Article  Google Scholar 

  18. F. Meng, H. Zheng, Y. Sun, M. Li, and J. Liu, Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets, Sensors, 2017, 17, p 1478–1490

    Article  Google Scholar 

  19. B. Li, M. Li, F. Meng, and J. Liu, Highly Sensitive Ethylene Sensors Using Pd Nanoparticles and rGO Modified Flower-Like Hierarchical Porous α-Fe2O3, Sens. Actuators B, 2019, 290, p 396–405

    Article  CAS  Google Scholar 

  20. D. Meng, D. Liu, G. Wang, Y. Shen, X. San, M. Li, and F. Meng, Low-Temperature Formaldehyde Gas Sensors Based on NiO-SnO2 Heterojunction Microflowers Assembled by Thin Porous Nanosheets, Sens. Actuators B, 2018, 273, p 418–428

    Article  CAS  Google Scholar 

  21. F. Meng, N. Hou, Z. Jin, B. Sun, W. Li, X. Xiao, C. Wang, M. Li, and J. Liu, Sub-ppb Detection of Acetone Using Au-Modified Flower-Like Hierarchical ZnO Structures, Sens. Actuators B, 2015, 219, p 209–217

    Article  CAS  Google Scholar 

  22. A.A. Sagade and R. Sharma, Copper Sulphide (CuxS) as an Ammonia Gas Sensor Working at Room Temperature, Sens. Actuators B, 2008, 133, p 135–143

    Article  CAS  Google Scholar 

  23. F.A. Sabah, N.M. Ahmed, Z. Hassan, and H.S. Rasheed, High Performance CuS p-Type Thin Film as a Hydrogen Gas Sensor, Sens. Actuators B, 2016, 249, p 68–76

    Article  CAS  Google Scholar 

  24. X.L. Yu, Y. Wang, H.L.W. Chan, and C.B. Cao, Novel Gas Sensoring Materials Based on CuS Hollow Spheres, Microporous Mesoporous Mater., 2009, 118, p 423–426

    Article  CAS  Google Scholar 

  25. S. Radhakrishnan, H. Kim, and B. Kim, A Novel CuS Microflower Superstructure Based Sensitive and Selective Nonenzymatic Glucose Detection, Sens. Actuators B, 2016, 233, p 93–99

    Article  CAS  Google Scholar 

  26. H. Heydari, S.E. Moosavifard, M. Shahraki, and S. Elyasi, Facile Synthesis Of Nanoporous CuS Nanospheres for High-Performance Supercapacitor Electrodes, J. Energy Chem., 2017, 26, p 762–767

    Article  Google Scholar 

  27. A. Venkadesh, S. Radhakrishnan, and J. Mathiyarasu, Eco-friendly Synthesis and Morphology-Dependent Superior Electrocatalytic Properties of CuS Nanostructures, Electrochim. Acta, 2017, 246, p 544–552

    Article  CAS  Google Scholar 

  28. S.M. Majhi, G.K. Naik, H. Lee, H. Song, C. Lee, I. Lee, and Y. Yu, Au@NiO Core-Shell Nanoparticles as a p-type Gas Sensor: Novel Synthesis, Characterization, and Their Gas Sensing Properties with Sensing Mechanism, Sens. Actuators B, 2018, 268, p 223–231

    Article  CAS  Google Scholar 

  29. X. Li, T. Lou, X. Sun, and Y. Li, Highly Sensitive WO3 Hollow-Sphere Gas Sensors, Inorg. Chem., 2004, 43, p 5442–5449

    Article  CAS  Google Scholar 

  30. K. Zheng, L. Gu, D. Sun, X. Mo, and G. Chen, The Properties of Ethanol Gas Sensor Based on Ti Doped ZnO Nanotetrapods, Mater. Sci. Eng. B, 2010, 166, p 104–107

    Article  CAS  Google Scholar 

  31. Y. Zhao, J. Liu, Q. Liu, Y. Sun, D. Song, W. Yang, J. Wang, and L. Liu, One-Step Synthesis of SnO2 Hollow Microspheres and Its Gas Sensing Properties, Mater. Lett., 2014, 136, p 286–288

    Article  CAS  Google Scholar 

  32. C. Han, X. Chen, D. Liu, P. Zhou, S. Zhao, H. Bi, D. Meng, D. Wei, and Y. Shen, Fabrication of Shrub-Like CuO Porous Films by a Top-Down Method for High Performance Ethanol Gas Sensor, Vacuum, 2018, 157, p 332–339

    Article  CAS  Google Scholar 

  33. M. Sun, Y. Yin, C. Song, Y. Wang, J. Xiao, S. Qu, W. Zheng, C. Li, W. Dong, and L. Zhang, Preparation of Bi2MoO6 Nanomaterials and Theirs Gas-Sensing Properties, J. Inorg. Organomet. Polym., 2016, 26, p 294–301

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (21476034) and Key Research &Development Project of Liaoning Province (2017308005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengwen Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Sun, M., Feng, G. et al. Ethanol Monitoring Gas Sensor Based on Flower-Shaped Copper Sulfide by a Facile Hydrothermal Method for Marine Transportation. J. of Materi Eng and Perform 28, 6649–6655 (2019). https://doi.org/10.1007/s11665-019-04450-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04450-z

Keywords

Navigation