Skip to main content

Advertisement

Log in

Effect of Ti Addition on the Microstructure and Mechanical Properties of Weld Metals in HSLA Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Acicular ferrite (AF) can significantly improve the mechanical properties of steel welds. One practical approach to enhance the formation of AF is to provide the heterogonous nucleation sites such as Ti oxides. In this study, Ti was added to different conventional welding processes including shield metal arc welding (SMAW), submerged arc welding (SAW) and tandem SAW (T-SAW). In the SMAW process, TiO2 particles as a source of Ti were inserted into the weld groove, while in the SAW and the T-SAW processes, the Ti-enriched S2MoTB wire was used as the filler metal. The microstructural evolution of weldments was characterized by employing optical and scanning electron microscopes. In addition, microhardness (Vickers, HV), Charpy impact and tensile tests were carried out to investigate the mechanical properties of weldments. Although the microhardness measurements of all weldments did not vary significantly and were in the range of 205-252 HV, there was a considerable difference in tensile and impact properties of the SAW and the T-SAW weldments. In the SMAW process, the addition of TiO2 results in no significant enhancement in tensile and impact toughness. This can be attributed to the inhomogeneous distribution of TiO2 particles as well as the formation of large inclusions in the structure. On the other hand, Ti addition to WM increased the yield strength from 489 to 552 MPa for the SAW process, and in contrast, it decreased the impact toughness from 75 to 33 J. This detrimental effect can be related to the higher deposition of other alloying elements in the WM and the formation of more ferrite side plate phase. By applying the T-SAW process, more Ti in WM led to a higher content of AF in the microstructure and increased both yield strength and impact toughness from 528 to 595 MPa and 100 to 180 J, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Avazkonandeh-Gharavol, M. Haddad-Sabzevar, and A. Haerian, Effect of Copper Content on the Microstructure and Mechanical Properties of Multipass MMA, Low Alloy Steel Weld Metal Deposits, Mater. Des., 2009, 30(6), p 1902–1912

    Article  CAS  Google Scholar 

  2. B. Beidokhti and R. Pouriamanesh, Effect of Filler Metal on Mechanical Properties of HSLA Welds, Weld. J., 2015, 94, p 334s–341s

    Google Scholar 

  3. S.S. Babu, The Mechanism of Acicular Ferrite in Weld Deposits, Curr. Opin. Solid State Mater. Sci., 2004, 8(3), p 267–278

    Article  CAS  Google Scholar 

  4. A. Contreras, A. Albiter, M. Salazar, and R. Perez, Slow Strain Rate Corrosion and Fracture Characteristics of X-52 and X-70 Pipeline Steels, Mater. Sci. Eng. A, 2005, 407(1), p 45–52

    Article  Google Scholar 

  5. H. Yu, Y. Sun, Q. Chen, H. Jiang, and L. Zhang, Precipitation Behaviors of X70 Acicular Ferrite Pipeline Steel, Int. J. Min. Met. Mater., 2006, 13(6), p 523–527

    CAS  Google Scholar 

  6. S.Y. Shin, B. Hwang, S. Kim, and S. Lee, Fracture Toughness Analysis in Transition Temperature Region of API, X70 Pipeline Steels, Mater. Sci. Eng. A, 2006, 429(1), p 196–204

    Article  Google Scholar 

  7. S. Bhole, J. Nemade, L. Collins, and C. Liu, Effect of Nickel and Molybdenum Additions on Weld Metal Toughness in a Submerged Arc Welded HSLA Line-Pipe Steel, J. Mater. Process. Technol., 2006, 173(1), p 92–100

    Article  CAS  Google Scholar 

  8. W. Bose-Filho, A. Carvalho, and M. Strangwood, Effects of Alloying Elements on the Microstructure and Inclusion Formation in HSLA Multipass Welds, Mater. Charact., 2007, 58(1), p 29–39

    Article  CAS  Google Scholar 

  9. B. Beidokhti, A. Koukabi, and A. Dolati, Effect of Titanium Addition on the Microstructure and Inclusion Formation in Submerged arc Welded HSLA Pipeline Steel, J. Mater. Process. Technol., 2009, 209(8), p 4027–4035

    Article  CAS  Google Scholar 

  10. T.K. Pal and U.K. Maity, Effect of nano Size TiO2 Particles on Mechanical Properties of AWS E 11018M Type Electrode, Mater. Sci. Appl., 2011, 2(09), p 1285

    CAS  Google Scholar 

  11. G. Thewlis, Classification and Quantification of Microstructures in Steels, Mater. Sci. Technol., 2004, 20(2), p 143–160

    Article  CAS  Google Scholar 

  12. F.R. Xiao, B. Liao, Y.Y. Shan, G.Y. Qiao, Y. Zhong, C. Zhang, and K. Yang, Challenge of Mechanical Properties of an Acicular Ferrite Pipeline Steel, Mater. Sci. Eng. A, 2006, 431(1), p 41–52

    Article  Google Scholar 

  13. X. Wan, H. Wang, L. Cheng, and K. Wu, The Formation Mechanisms of Interlocked Microstructures in Low-Carbon High-Strength Steel Weld Metals, Mater. Charact., 2012, 67, p 41–51

    Article  CAS  Google Scholar 

  14. M.C. Zhao, K. Yang, and Y. Shan, The Effects of Thermo-Mechanical Control Process on Microstructures and Mechanical Properties of a Commercial Pipeline Steel, Mater. Sci. Eng. A, 2002, 335(1), p 14–20

    Article  Google Scholar 

  15. S. Nayak, R. Misra, J. Hartmann, F. Siciliano, and J. Gray, Microstructure and Properties of Low Manganese and Niobium Containing HIC Pipeline Steel, Mater. Sci. Eng. A, 2008, 494(1), p 456–463

    Article  Google Scholar 

  16. K. Junhua, Z. Lin, G. Bin, L. Pinghe, W. Aihua, and X. Changsheng, Influence of Mo Content on Microstructure and Mechanical Properties of High Strength Pipeline Steel, Mater. Des., 2004, 25(8), p 723–728

    Article  Google Scholar 

  17. S. St-Laurent and G. L’Espérance, Effects of Chemistry, Density and Size Distribution of Inclusions on the Nucleation of Acicular Ferrite of C-Mn Steel Shielded-Metal-Arc-Welding Weldments, Mater. Sci. Eng. A, 1992, 149(2), p 203–216

    Article  Google Scholar 

  18. J. Gregg, H. Bhadeshia, and L.E. Svensson, Inoculation of Steel Welds with Non-metallic Particles, Mater. Sci. Eng. A, 1997, 223(1–2), p 146–157

    Article  Google Scholar 

  19. M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, and E. Rahimi, Effect of Ti-Containing Inclusions on the Nucleation of Acicular Ferrite and Mechanical Properties Of Multipass Weld Metals, Micron, 2013, 45, p 107–114

    Article  CAS  Google Scholar 

  20. G. Thewlis, J. Whiteman, and D. Senogles, Dynamics of Austenite to Ferrite Phase Transformation in Ferrous Weld Metals, Mater. Sci. Technol., 1997, 13(3), p 257–274

    Article  CAS  Google Scholar 

  21. Z. Zhang and R. Farrar, Role of Non-metallic Inclusions in Formation of Acicular Ferrite in Low Alloy Weld Metals, Mater. Sci. Technol., 1996, 12(3), p 237–260

    Article  CAS  Google Scholar 

  22. C.J. Zhang, L.N. Gao, and L.G. Zhu, Effect of Inclusion Size and Type on the Nucleation of Acicular Ferrite in High Strength Ship Plate Steel, ISIJ Int., 2018, 58(5), p 965–969

    Article  CAS  Google Scholar 

  23. J.H. Shim, Y. Cho, S. Chung, J.D. Shim, and D. Lee, Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel, Acta Mater., 1999, 47(9), p 2751–2760

    Article  CAS  Google Scholar 

  24. B. Wang, X. Liu, and G. Wang, Inclusion Characteristics and Acicular Ferrite Nucleation in Ti-Containing Weld Metals of X70 Pipeline Steel, Steel Res. Int., 2018, 89(2), p 1700316

    Article  Google Scholar 

  25. H. Liu, J. Feng, H. Fujii, and K. Nogi, Wear Characteristics of a WC–Co Tool in Friction Stir Welding of AC4A + 30vol% SiCp Composite, Int. J. Mach. Tool. Manuf., 2005, 45(14), p 1635–1639

    Article  Google Scholar 

  26. R. Ale, J. Rebello, and J. Charlier, A Metallographic Technique for Detecting Martensite-Austenite Constituents in the Weld Heat-Affected Zone of a Micro-Alloyed Steel, Mater. Charact., 1996, 37(2), p 89–93

    Article  CAS  Google Scholar 

  27. Standard Test Methods for Tension Testing of Metallic Materials, E8/E8M − 15a, ASTM Standard, 2015, p. 1–29

  28. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, E23 − 12c, ASTM Standard, 2012, p. 1–25

  29. Standard Test Method for Microindentation Hardness of Materials, E384 − 16, ASTM Standard, 2016, p. 1–28

  30. J.B. Ju, W.S. Kim, and J.I. Jang, Variations in DBTT and CTOD Within Weld Heat-Affected Zone of API, X65 Pipeline Steel, Mater. Sci. Eng. A, 2012, 546, p 258–262

    Article  CAS  Google Scholar 

  31. S. Barnes, A. Bhatti, A. Steuwer, R. Johnson, J. Altenkirch, and P. Withers, Friction Stir Welding in HSLA-65 Steel: Part I. Influence of Weld Speed and Tool Material on Microstructural Development, Metall. Mater. Trans. A, 2012, 43(7), p 2342–2355

    Article  CAS  Google Scholar 

  32. M. Sinfield, J. Lippold, B. Alexandrov, D. Forrest, in TWI Ltd., Abington, UK, 2008

  33. A. Lambert-Perlade, A.-F. Gourgues, and A. Pineau, Austenite to Bainite Phase Transformation in the Heat-Affected Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, 52(8), p 2337–2348

    Article  CAS  Google Scholar 

  34. J.C. Lippold, Welding metallurgy and weldability, Wiley, London, 2014, p 65

    Google Scholar 

  35. T. Zhang, Z. Li, F. Young, H.J. Kim, H. Li, H. Jing, and W. Tillmann, Global Progress on Welding Consumables for HSLA Steel, ISIJ Int., 2014, 54(7), p 1472–1484

    Article  CAS  Google Scholar 

  36. J. Wang, P. Van Der Wolk, and S. Van Der Zwaag, On the Influence of Alloying Elements on the Bainite Reaction in Low Alloy Steels During Continuous Cooling, J. Mater. Sci., 2000, 35(17), p 4393–4404

    Article  CAS  Google Scholar 

  37. J.H. Shim, Y.W. Cho, J.D. Shim, Y.J. Oh, J.S. Byun, and D.N. Lee, Effects of Si and Al on acicular ferrite formation in C-Mn steel, Metall. Mater. Trans. A, 2001, 32(1), p 75–83

    Article  Google Scholar 

  38. J.S. Byun, J.H. Shim, and Y.W. Cho, Influence of Mn on Microstructural Evolution in Ti-Killed C-Mn Steel, Scr. Mater., 2003, 48(4), p 449–454

    Article  CAS  Google Scholar 

  39. Z. Zhang and R. Farrar, Influence of Mn and Ni on the Microstructure and Toughness of C-Mn-Ni Weld Metals, Weld. J., 1997, 76(5), p 183

    Google Scholar 

  40. D. Crockett, J. Rhone, R. Young, and D. Noernberg, Design Considerations for Submerged arc Consumables Intended for the Manufacture of Line Pipe, Pipeline Technol., 1995, 1, p 151–162

    Google Scholar 

  41. G. Evans, The Effect of Nickel on the Microstructure and Properties of C-Mn All-Weld Metal Deposits, Weld. Res. Abroad, 1991, 37(2/3), p 70–83

    Google Scholar 

  42. B. Beidokhti, A. Koukabi, and A. Dolati, Influences of Titanium and Manganese on High Strength Low Alloy SAW Weld Metal Properties, Mater. Charact., 2009, 60(3), p 225–233

    Article  CAS  Google Scholar 

  43. Y. Peng, W. Chen, and Z. Xu, Study of High Toughness Ferrite Wire for Submerged Arc Welding of Pipeline Steel, Mater. Charact., 2001, 47(1), p 67–73

    Article  CAS  Google Scholar 

  44. Specification for Line Pipe, 5L, API Standard, 2012, p. 27–50

  45. S. Araki, K. Fujii, D. Akama, T. Tsuchiyama, S. Takaki, T. Ohmura, and J. Takahashi, Effect of Low Temperature Aging on Hall-Petch Coefficient in Ferritic Steels Containing a Small Amount of Carbon and Nitrogen, Testu To Hagane, 2017, 103(8), p 491–497

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Dehghani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouriamanesh, R., Dehghani, K., Vallant, R. et al. Effect of Ti Addition on the Microstructure and Mechanical Properties of Weld Metals in HSLA Steels. J. of Materi Eng and Perform 27, 6058–6068 (2018). https://doi.org/10.1007/s11665-018-3686-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3686-y

Keywords

Navigation