Skip to main content
Log in

Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In direct current plasma nitriding (DCPN), the treated components are subjected to a high cathodic potential, which brings several inherent shortcomings, e.g., damage by arcing and the edging effect. In active screen plasma nitriding (ASPN) processes, the cathodic potential is applied to a metal screen that surrounds the workload, and the component to be treated is placed in a floating potential. Such an electrical configuration allows plasma to be formed on the metal screen surface rather than on the component surface; thus, the shortcomings of the DCPN are eliminated. In this work, the nitrided experiments were performed using a plasma nitriding unit. Two groups of samples were placed on the table in the cathodic and the floating potential, corresponding to the DCPN and ASPN, respectively. The floating samples and table were surrounded by a steel screen. The DCPN and ASPN of the AISI 304 stainless steels are investigated as a function of the electric potential. The samples were characterized using scanning electron microscopy with energy-dispersive x-ray spectroscopy, x-ray diffraction, atomic force microscopy and transmission electron microscope. Dry sliding ball-on-disk wear tests were conducted on the untreated substrate, DCPN and ASPN samples. The results reveal that all nitrided samples successfully produced similar nitrogen-supersaturated S phase layers on their surfaces. This finding also shows the strong impact of the electric potential of the nitriding process on the morphology, chemical characteristics, hardness and tribological behavior of the DCPN and ASPN samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Rep., 2009, 65(4–6), p 39–104

    Article  Google Scholar 

  2. L.-H. Lin, S.-C. Chen, C.-Z. Wu, J.-M. Hung, and K.-L. Ou, Microstructure and Antibacterial Properties of Microwave Plasma Nitrided Layers on Biomedical Stainless Steels, Appl. Surf. Sci., 2011, 257(17), p 7375–7380

    Article  Google Scholar 

  3. T. Bell, Surface Engineering of Austenitic Stainless Steel, Surf. Eng., 2002, 18(6), p 415–422

    Article  Google Scholar 

  4. Y. Yu, S. Shironita, K. Nakatsuyama, K. Souma, and M. Umeda, Surface Composition Effect of Nitriding Ni-Free Stainless Steel as Bipolar Plate of Polymer Electrolyte Fuel Cell, Appl. Surf. Sci. Part A, 2016, 388, p 234–238

    Article  Google Scholar 

  5. X. Qin, X. Guo, J. Lu, L. Chen, J. Qin, and W. Lu, Erosion-wear and Intergranular Corrosion Resistance Properties of AISI, 304L Austenitic Stainless Steel After Low-Temperature Plasma Nitriding, J. Alloy. Compd., 2017, 698, p 1094–1101

    Article  Google Scholar 

  6. Y. Li, Z. Wang, and L. Wang, Surface Properties of Nitrided Layer on AISI, 316L Austenitic Stainless Steel Produced by High Temperature Plasma Nitriding in Short Time, Appl. Surf. Sci., 2014, 298, p 243–250

    Article  Google Scholar 

  7. A.-R. Grayeli-Korpi and H. Savaloni, Effect of Nitrogen Ion Implantation on Corrosion Inhibition of Nickel Coated 316 Stainless Steel and Correlation with Nano-Structure, Appl. Surf. Sci., 2012, 258(24), p 9982–9988

    Article  Google Scholar 

  8. M. Laleh, F. Kargar, and M. Velashjerdi, Low-Temperature Nitriding of Nanocrystalline Stainless Steel and Its Effect on Improving Wear and Corrosion Resistance, J. Mater. Eng. Perform., 2013, 22(5), p 1304–1310

    Article  Google Scholar 

  9. Z.L. Zhang and T. Bell, Structure and Corrosion Resistance of Plasma Nitrided Stainless Steel, Surf. Eng., 1985, 1(2), p 131–136

    Article  Google Scholar 

  10. H. Dong, S Phase Surface Engineering of Fe–Cr, Co–Cr and N–Cr Alloys, Int. Mater. Rev., 2010, 55(2), p 65–98

    Article  Google Scholar 

  11. D. Wu, H. Kahn, J.C. Dalton, G.M. Michal, F. Ernst, and A.H. Heuer, Orientation Dependence of Nitrogen Supersaturation in Austenitic Stainless Steel During Low-Temperature Gas-Phase Nitriding, Acta Mater., 2014, 79, p 339–350

    Article  Google Scholar 

  12. B.K. Brink, K. Ståhl, T.L. Christiansen, J. Oddershede, G. Winther, and M.A.J. Somers, On the Elusive Crystal Structure of Expanded Austenite, Scr. Mater., 2017, 131, p 59–62

    Article  Google Scholar 

  13. G.Y. Li and M.K. Lei, Microstructure and Properties of Plasma Source Nitrided AISI, 316 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2017, 26(1), p 418–423

    Article  Google Scholar 

  14. S. Ahangarani, A.R. Sabour, and F. Mahboubi, Surface Modification of 30CrNiMo8 Low-Alloy Steel by Active Screen Setup and Conventional Plasma Nitriding Methods, Appl. Surf. Sci., 2007, 254(5), p 1427–1435

    Article  Google Scholar 

  15. G. Kaklamani, J. Bowen, N. Mehrban, H. Dong, L.M. Grover, and A. Stamboulis, Active Screen Plasma Nitriding Enhances Cell Attachment to Polymer Surfaces, Appl. Surf. Sci., 2013, 273, p 787–798

    Article  Google Scholar 

  16. M. Naeem, M. Shafiq, M. Zaka-ul-Islam, N. Nawaz, J.C. Díaz-Guillén, and M. Zakaullah, Effect of Cathodic Cage Size on Plasma Nitriding of AISI, 304 Steel, Mater. Lett., 2016, 181, p 78–81

    Article  Google Scholar 

  17. K. Lin, X. Li, Y. Sun, X. Luo, and H. Dong, Active Screen Plasma Nitriding of 316 Stainless Steel for the Application of Bipolar Plates in Proton Exchange Membrane Fuel Cells, Int. J. Hydrogen Energy, 2014, 39(36), p 21470–21479

    Article  Google Scholar 

  18. R.R.M. de Sousa, F.O. de Araújo, L.C. Gontijo, J.A.P. da Costa, and C. Alves, Jr., Cathodic Cage Plasma Nitriding (CCPN) of Austenitic Stainless Steel (AISI, 316): Influence of the Different Ratios of the (N2/H2) on the Nitrided Layers Properties, Vacuum, 2012, 86(12), p 2048–2053

    Article  Google Scholar 

  19. G.G. Tibbetts, Role of Nitrogen Atoms in “Ion-Nitriding”, J. Appl. Phys., 1974, 45(11), p 5072–5073

    Article  Google Scholar 

  20. J. Walkowicz, On the Mechanisms of Diode Plasma Nitriding in N2–H2 Mixtures Under DC-Pulsed Substrate Biasing, Surf. Coat. Technol., 2003, 174–175, p 1211–1219

    Article  Google Scholar 

  21. Interactions of ion beams with surfaces. Reactions of nitrogen with silicon and its oxides, The Journal of Chemical Physics 68(4) (1978) 1776-1784

  22. K. Rusnak and J. Vicek, Emission Spectroscopy of the Plasma in the Cathode Region of N2–H2 Abnormal Glow Discharges for Steel Surface Nitriding, J. Phys. D Appl. Phys., 1993, 26(4), p 585

    Article  Google Scholar 

  23. H. Michel, T. Czerwiec, M. Gantois, D. Ablitzer, and A. Ricard, Progress in the Analysis of the Mechanisms of Ion Nitriding, Surf. Coat. Technol., 1995, 72(1), p 103–111

    Article  Google Scholar 

  24. A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, Gas Discharge Plasmas and their Applications, Spectrochim. Acta, Part B, 2002, 57(4), p 609–658

    Article  Google Scholar 

  25. C. Zhao, C.X. Li, H. Dong, and T. Bell, Study on the Active Screen Plasma Nitriding and its Nitriding Mechanism, Surf. Coat. Technol., 2006, 201(6), p 2320–2325

    Article  Google Scholar 

  26. A. Saeed, A.W. Khan, F. Jan, M. Abrar, M. Khalid, and M. Zakaullah, Validity of “Sputtering and Re-condensation” Model in Active Screen Cage Plasma Nitriding Process, Appl. Surf. Sci., 2013, 273, p 173–178

    Article  Google Scholar 

  27. P. Hubbard, J.G. Partridge, E.D. Doyle, D.G. McCulloch, M.B. Taylor, and S.J. Dowey, Investigation of Nitrogen Mass Transfer Within an Industrial Plasma Nitriding System I: The Role of Surface Deposits, Surf. Coat. Technol., 2010, 204(8), p 1145–1150

    Article  Google Scholar 

  28. P. Hubbard, S.J. Dowey, J.G. Partridge, E.D. Doyle, and D.G. McCulloch, Investigation of Nitrogen Mass Transfer Within an Industrial Plasma Nitriding System II: Application of a Biased Screen, Surf. Coat. Technol., 2010, 204(8), p 1151–1157

    Article  Google Scholar 

  29. S. Ahangarani, A.R. Sabour, F. Mahboubi, and T. Shahrabi, The Influence of Active Screen Plasma Nitriding Parameters on Corrosion Behavior of a Low-Alloy Steel, J. Alloy. Compd., 2009, 484(1–2), p 222–229

    Article  Google Scholar 

  30. S. Corujeira Gallo and H. Dong, New Insights into the Mechanism of Low-Temperature Active-Screen Plasma Nitriding of Austenitic Stainless Steel, Scripta Mater., 2012, 67(1), p 89–91

    Article  Google Scholar 

  31. C. Zhao, L.Y. Wang, and L. Han, Active Screen Plasma Nitriding of AISI, 316L Austenitic Stainless Steel at Different Potentials, Surf. Eng., 2008, 24(3), p 188–192

    Article  Google Scholar 

  32. A. Nishimoto, A. Tokuda, and K. Akamatsu, Effect of Through Cage on Active Screen Plasma Nitriding Properties, Mater. Trans., 2009, 50(5), p 1169–1173

    Article  Google Scholar 

  33. Y. Li, Y. He, S. Zhang, X. He, W. Wang, and B. Hu, Microstructures and Tribological Behaviour of Oxynitrided Austenitic Stainless Steel, Vacuum, 2017, 146(Supplement C), p 1–7

    Google Scholar 

  34. J.C. Stinville, J. Cormier, C. Templier, and P. Villechaise, Monotonic Mechanical Properties of Plasma Nitrided 316L Polycrystalline Austenitic Stainless Steel: Mechanical Behaviour of the Nitrided Layer and Impact of Nitriding Residual Stresses, Mater. Sci. Eng. A, 2014, 605, p 51–58

    Article  Google Scholar 

  35. M. Asgari, A. Barnoush, R. Johnsen, and R. Hoel, Microstructural Characterization of Pulsed Plasma Nitrided 316L Stainless Steel, Mater. Sci. Eng. A, 2011, 529, p 425–434

    Article  Google Scholar 

  36. Y. Sun, X.Y. Li, and T. Bell, X-ray Diffraction Characterisation of Low Temperature Plasma Nitrided Austenitic Stainless Steels, J. Mater. Sci., 1999, 34(19), p 4793–4802

    Article  Google Scholar 

  37. D. Wu, H. Kahn, J.C. Dalton, G.M. Michal, F. Ernst, and A.H. Heuer, Orientation Dependence of Nitrogen Supersaturation in Austenitic Stainless Steel During Low-Temperature Gas-Phase Nitriding, Acta Mater., 2014, 79(Supplement C), p 339–350

    Article  Google Scholar 

  38. E. Menthe, K.T. Rie, J.W. Schultze, and S. Simson, Structure and Properties of Plasma-Nitrided Stainless Steel, Surf. Coat. Technol., 1995, 74(Part 1), p 412–416

    Article  Google Scholar 

  39. M.K. Lei and X.M. Zhu, Chemical state of Nitrogen in A High Nitrogen Face-Centered-Cubic Phase Formed on Plasma Source Ion Nitrided Austenitic Stainless Steel, J. Vacuum Sci. Technol. A Vacuum Surf. Films, 2004, 22(5), p 2067–2070

    Article  Google Scholar 

  40. A. Martinavičius, G. Abrasonis, A.C. Scheinost, R. Danoix, F. Danoix, J.C. Stinville, G. Talut, C. Templier, O. Liedke, S. Gemming, and W. Möller, Nitrogen Interstitial Diffusion Induced Decomposition in AISI, 304L Austenitic Stainless Steel, Acta Mater., 2012, 60(10), p 4065–4076

    Article  Google Scholar 

  41. Y. Li, H. Xu, F. Zhu, and L. Wang, Low Temperature Anodic Nitriding of AISI, 304 Austenitic Stainless Steel, Mater. Lett., 2014, 128, p 231–234

    Article  Google Scholar 

  42. J.P. Rivière, C. Templier, A. Declémy, O. Redjdal, Y. Chumlyakov, and G. Abrasonis, Microstructure of Expanded Austenite in Ion-Nitrided AISI, 316L Single Crystals, Surf. Coat. Technol., 2007, 201(19–20), p 8210–8214

    Article  Google Scholar 

  43. O. Öztürk, S. Okur, and J.P. Riviere, Structural and Magnetic Characterization of Plasma Ion Nitrided Layer on 316L Stainless Steel Alloy, Nucl. Instrum. Methods Phys. Res., Sect. B, 2009, 267(8–9), p 1540–1545

    Article  Google Scholar 

  44. S. Parascandola, W. Möller, and D.L. Williamson, The Nitrogen Transport in Austenitic Stainless Steel at Moderate Temperatures, Appl. Phys. Lett., 2000, 76(16), p 2194–2196

    Article  Google Scholar 

  45. M. Golzar Shahri, S.R. Hosseini, M. Salehi, and M. Naderi, Evaluation of Nitrogen Diffusion in Thermo-Mechanically Nanostructured and Plasma Nitrided Stainless Steel, Surf. Coat. Technol., 2016, 296, p 40–45

    Article  Google Scholar 

  46. D. Manova, C. Díaz, L. Pichon, G. Abrasonis, and S. Mändl, Comparability and Accuracy of Nitrogen Depth Profiling in Nitrided Austenitic Stainless Steel, Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, 349, p 106–113

    Article  Google Scholar 

  47. J. Stinville, P. Villechaise, C. Templier, J. Riviere, and M. Drouet, Plasma Nitriding of 316L Austenitic Stainless Steel: Experimental Investigation of Fatigue Life and Surface Evolution, Surf. Coat. Technol., 2010, 204(12), p 1947–1951

    Article  Google Scholar 

  48. F. Borgioli, A. Fossati, E. Galvanetto, and T. Bacci, Glow-Discharge Nitriding of AISI, 316L Austenitic Stainless Steel: Influence of Treatment Temperature, Surf. Coat. Technol., 2005, 200(7), p 2474–2480

    Article  Google Scholar 

  49. F. Borgioli, E. Galvanetto, and T. Bacci, Influence of Surface Morphology and Roughness on Water Wetting Properties of Low Temperature Nitrided Austenitic Stainless Steels, Mater. Charact., 2014, 95, p 278–284

    Article  Google Scholar 

  50. J.C. Stinville, C. Templier, P. Villechaise, and L. Pichon, Swelling of 316L Austenitic Stainless Steel Induced by Plasma Nitriding, J. Mater. Sci., 2011, 46(16), p 5503–5511

    Article  Google Scholar 

  51. C. Tromas, J.C. Stinville, C. Templier, and P. Villechaise, Hardness and Elastic Modulus Gradients in Plasma-Nitrided 316L Polycrystalline Stainless Steel Investigated by Nanoindentation Tomography, Acta Mater., 2012, 60(5), p 1965–1973

    Article  Google Scholar 

  52. K.J.B. Ribeiro, R.R.M. de Sousa, F.O. de Araújo, R.A. de Brito, J.C.P. Barbosa, and C. Alves, Jr., Industrial Application of AISI, 4340 Steels Treated in Cathodic Cage Plasma Nitriding Technique, Mater. Sci. Eng. A, 2008, 479(1–2), p 142–147

    Article  Google Scholar 

  53. M. Henning and H. Vehoff, Local Mechanical Behavior and Slip Band Formation Within Grains of Thin Sheets, Acta Mater., 2005, 53(5), p 1285–1292

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Key Basic Research Program of China (973) (2014CB046404), the National Natural Science Foundation of China (51301149) and the China Postdoctoral Science Foundation funded project (2015M570090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., He, Y., Wang, W. et al. Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior. J. of Materi Eng and Perform 27, 948–960 (2018). https://doi.org/10.1007/s11665-018-3199-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3199-8

Keywords

Navigation