Skip to main content
Log in

Quantitative Studies of Machining-Induced Microstructure Alteration and Plastic Deformation in AISI 316 Stainless Steel Using EBSD

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Surface machining can result in a heavily plastic deformed layer in the subsurface. The microstructure alterations and the extent of plastic deformation of a milled 316 austenitic stainless steel were investigated using electron backscatter diffraction (EBSD) technique in this study. The microstructure alteration of the deformed layer was characterized by the generation of grain and subgrain boundaries. The plastic deformation was evaluated by kernel average misorientation (KAM) and grain average misorientation (GAM). The local deformation within grains was assessed by the misorientation from adjacent point (MFAP). The EBSD results indicated gradients of microstructure and plastic deformation along the depth direction. High-angle grain boundaries were generated within the depth of 40 μm, and subgrain boundaries were produced up to the depth of 150 μm. Estimated by KAM and GAM, the plastic strain was about 0.7 at the depth of 25 μm and decreased to 0.1 at the depth of 115 μm The MFAP analysis revealed that the local deformation varied within individual grains. Additionally, the change of micro-hardness along the depth direction showed a strong correlation with KAM and GAM values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.P. Davim, Surface Integrity in Machining, Springer, Berlin, 2010

    Book  Google Scholar 

  2. I. Jawahir, E. Brinksmeier, R. M’saoubi, D. Aspinwall, J. Outeiro, D. Meyer, D. Umbrello, and A. Jayal, Surface Integrity in Material Removal Processes: Recent Advances, CIRP Ann. Manuf. Technol., 2011, 60(2), p 603–626

    Article  Google Scholar 

  3. R. M’Saoubi, J. Outeiro, H. Chandrasekaran, O. Dillon, Jr., and I. Jawahir, A Review of Surface Integrity in Machining and Its Impact on Functional Performance and Life of Machined Products, International Journal of Sustainable Manufacturing, 2008, 1(1–2), p 203–236

    Article  Google Scholar 

  4. S. Ghosh and V. Kain, Microstructural Changes in AISI, 304L Stainless Steel Due to Surface Machining: Effect on Its Susceptibility to Chloride Stress Corrosion Cracking, J. Nucl. Mater., 2010, 403(1), p 62–67

    Article  Google Scholar 

  5. S.G. Acharyya, A. Khandelwal, V. Kain, A. Kumar, and I. Samajdar, Surface Working of 304L Stainless Steel: Impact on Microstructure, Electrochemical Behavior and SCC Resistance, Mater. Charact., 2012, 72, p 68–76

    Article  Google Scholar 

  6. D. Novovic, R. Dewes, D. Aspinwall, W. Voice, and P. Bowen, The Effect of Machined Topography and Integrity on Fatigue Life, Int. J. Mach. Tools Manuf, 2004, 44(2), p 125–134

    Article  Google Scholar 

  7. A. Javidi, U. Rieger, and W. Eichlseder, The Effect of Machining on the Surface Integrity and Fatigue Life, Int. J. Fatigue, 2008, 30(10), p 2050–2055

    Article  Google Scholar 

  8. F. Hashimoto, Y. Guo, and A. Warren, Surface Integrity Difference Between Hard Turned and Ground Surfaces and Its Impact on Fatigue Life, CIRP Ann. Manuf. Technol., 2006, 55(1), p 81–84

    Article  Google Scholar 

  9. W. Zhang, K. Fang, Y. Hu, S. Wang, and X. Wang, Effect of Machining-Induced Surface Residual Stress on Initiation of Stress Corrosion Cracking in 316 Austenitic Stainless Steel, Corros. Sci., 2016, 108, p 173–184

    Article  Google Scholar 

  10. Y. Sueishi, A. Kohyama, H. Kinoshita, M. Narui, and K. Fukumoto, Microstructure and Nano-hardness Analyses of Stress Corrosion Cracking, Utilizing 316L Core Shroud of BWR Power Reactors, Fusion Eng. Des., 2006, 81(8), p 1099–1103

    Article  Google Scholar 

  11. G. Van Boven, W. Chen, and R. Rogge, The Role of Residual Stress in Neutral pH Stress Corrosion Cracking of Pipeline Steels, Part I: Pitting and cracking occurrence, Acta Materialia, 2007, 55(1), p 29–42

    Google Scholar 

  12. S. To, W. Lee, and C. Cheung, Orientation Changes of Aluminium Single Crystals in Ultra-Precision Diamond Turning, J. Mater. Process. Technol., 2003, 140(1), p 346–351

    Article  Google Scholar 

  13. G. Krolczyk, P. Nieslony, and S. Legutko, Microhardness and Surface Integrity in Turning Process of Duplex Stainless Steel (DSS) for Different Cutting Conditions, J. Mater. Eng. Perform., 2014, 23(3), p 859–866

    Article  Google Scholar 

  14. Y. Kaynak, Machining and Phase Transformation Response of Room-Temperature Austenitic NiTi Shape Memory Alloy, J. Mater. Eng. Perform., 2014, 23(9), p 3354–3360

    Article  Google Scholar 

  15. S. Cai, Y. Chen, G. Ye, M. Jiang, H. Wang, and L. Dai, Characterization of the Deformation Field in Large-Strain Extrusion Machining, J. Mater. Process. Technol., 2015, 216, p 48–58

    Article  Google Scholar 

  16. Z. Pu, J. Outeiro, A. Batista, O. Dillon, D. Puleo, and I. Jawahir, Enhanced Surface Integrity of AZ31B Mg Alloy by Cryogenic Machining Towards Improved Functional Performance of Machined Components, Int. J. Mach. Tools Manuf, 2012, 56, p 17–27

    Article  Google Scholar 

  17. H. Safari, S. Sharif, S. Izman, and H. Jafari, Surface Integrity Characterization in High-Speed Dry End Milling of Ti-6Al-4V Titanium Alloy, Int. J. Adv. Manuf. Technol., 2015, 78(1–4), p 651–657

    Article  Google Scholar 

  18. Y. Liu, H. Li, and M. Li, Characterization of Surface Layer in TC17 Alloy Treated by Air Blast Shot Peening, Mater. Des., 2015, 65, p 120–126

    Article  Google Scholar 

  19. Y. Kaynak, H. Tobe, R. Noebe, H. Karaca, and I. Jawahir, The Effects of Machining on the Microstructure and Transformation Behavior of NiTi Alloy, Scripta Mater., 2014, 74, p 60–63

    Article  Google Scholar 

  20. M. Imran, P.T. Mativenga, A. Gholinia, and P.J. Withers, Evaluation of Surface Integrity in Micro Drilling Process for Nickel-Based Superalloy, Int. J. Adv. Manuf. Technol., 2011, 55(5–8), p 465–476

    Article  Google Scholar 

  21. G. Rotella, O. Dillon, Jr., D. Umbrello, L. Settineri, and I. Jawahir, The Effects of Cooling Conditions on Surface Integrity in Machining of Ti6Al4V Alloy, Int. J. Adv. Manuf. Technol., 2014, 71(1–4), p 47–55

    Article  Google Scholar 

  22. D. Umbrello, Investigation of Surface Integrity in Dry Machining of Inconel 718, Int. J. Adv. Manuf. Technol., 2013, 69(9–12), p 2183–2190

    Article  Google Scholar 

  23. P. Horodek, K. Siemek, J. Dryzek, A. Kobets, and M. Wróbel, Positron Annihilation and Complementary Studies of Stainless Steel Exposed to Sandblasting at Different Angles, Tribol. Lett., 2017, 65(1), p 30

    Article  Google Scholar 

  24. J. Dryzek and P. Horodek, Positron Annihilation Studies of the Near-Surface Regions of Niobium Before and After Wear Treatment, Tribol. Lett., 2017, 65(4), p 117

    Article  Google Scholar 

  25. P. Horodek, J. Dryzek, and M. Wróbel, Positron Annihilation Study of Defects Induced by Various Cutting Methods in Stainless Steel Grade 304, Tribol. Lett., 2012, 45(2), p 341–347

    Article  Google Scholar 

  26. J. Dryzek, P. Horodek, and M. Wróbel, Use of Positron Annihilation Measurements to Detect the Defect Beneath Worn Surface of Stainless Steel 1.4301 (EN) Under Dry Sliding Condition, Wear, 2012, 294, p 264–269

    Article  Google Scholar 

  27. R. M’Saoubi and L. Ryde, Application of the EBSD Technique for the Characterisation of Deformation Zones in Metal Cutting, Mater. Sci. Eng., A, 2005, 405(1), p 339–349

    Article  Google Scholar 

  28. H. Touazine, M. Jahazi, and P. Bocher, Accurate Determination of Damaged Subsurface Layers in Machined Inconel 718, Int. J. Adv. Manuf. Technol., 2017, 88(9), p 3419–3427

    Article  Google Scholar 

  29. A. Yamamoto, T. Yamada, S. Nakahigashi, L. Liu, M. Terasawa, and H. Tsubakino, Effects of Surface Grinding on Hardness Distribution and Residual Stress in Low Carbon Austenitic Stainless Steel SUS316L, ISIJ Int., 2004, 44(10), p 1780–1782

    Article  Google Scholar 

  30. S. Bissey-Breton, V. Vignal, F. Herbst, and J. Coudert, Influence of Machining on the Microstructure, Mechanical Properties and Corrosion Behaviour of a Low Carbon Martensitic Stainless Steel, Procedia CIRP, 2016, 46, p 331–335

    Article  Google Scholar 

  31. J. Outeiro, S. Campocasso, L. Denguir, G. Fromentin, V. Vignal, and G. Poulachon, Experimental and Numerical Assessment of Subsurface Plastic Deformation Induced by OFHC Copper Machining, CIRP Ann. Manuf. Technol., 2015, 64(1), p 53–56

    Article  Google Scholar 

  32. S. Choudhary, V. Nanda, S. Shekhar, A. Garg, and K. Mondal, Effect of Microstructural Anisotropy on the Electrochemical Behavior of Rolled Mild Steel, J. Mater. Eng. Perform., 2017, 26(1), p 185–194

    Article  Google Scholar 

  33. Z. Long, T. Liu, J. He, Y. Zhang, and F. Pan, The Effects of Pre-strain and Subsequent Annealing on the Yielding Behavior in a Rolled Magnesium Alloy AZ31, J. Mater. Eng. Perform., 2015, 24(1), p 16–23

    Article  Google Scholar 

  34. M. Kamaya, Measurement of Local Plastic Strain Distribution of Stainless Steel by Electron Backscatter Diffraction, Mater. Charact., 2009, 60(2), p 125–132

    Article  Google Scholar 

  35. M. Kamaya, A.J. Wilkinson, and J.M. Titchmarsh, Measurement of Plastic Strain of Polycrystalline Material by Electron Backscatter Diffraction, Nucl. Eng. Des., 2005, 235(6), p 713–725

    Article  Google Scholar 

  36. S.I. Wright, M.M. Nowell, and D.P. Field, A Review of Strain Analysis Using Electron Backscatter Diffraction, Microsc. Microanal., 2011, 17(03), p 316–329

    Article  Google Scholar 

  37. S.I. Wright and M.M. Nowell, EBSD Image Quality Mapping, Microsc. Microanal., 2006, 12(01), p 72–84

    Article  Google Scholar 

  38. S. Wardle, L. Lin, A. Cetel, B. Adams, Orientation Imaging Microscopy: Monitoring Residual Stress Profiles in Single Crystals Using an Image-Quality Parameter, IQ, in Proceedings of the Annual Meeting-Electron Microscopy Society of America (San Francisco Press, 1994), pp 680

  39. D.N. Githinji, S.M. Northover, P.J. Bouchard, and M.A. Rist, An EBSD Study of the Deformation of Service-Aged 316 Austenitic Steel, Metallurgical and Materials Transactions A, 2013, 44(9), p 4150–4167

    Article  Google Scholar 

  40. R. Yoda, T. Yokomaku, and N. Tsuji, Plastic Deformation and Creep Damage Evaluations of Type 316 Austenitic Stainless Steels by EBSD, Mater. Charact., 2010, 61(10), p 913–922

    Article  Google Scholar 

  41. M. Kamaya, A.J. Wilkinson, and J.M. Titchmarsh, Quantification of Plastic Strain of Stainless Steel and Nickel Alloy by Electron Backscatter Diffraction, Acta Mater., 2006, 54(2), p 539–548

    Article  Google Scholar 

  42. M. Kamaya, Assessment of Local Deformation Using EBSD: Quantification of Accuracy of Measurement and Definition of Local Gradient, Ultramicroscopy, 2011, 111(8), p 1189–1199

    Article  Google Scholar 

  43. M. Jedrychowski, J. Tarasiuk, B. Bacroix, and S. Wronski, Electron Backscatter Diffraction Investigation of Local Misorientations and Orientation Gradients in Connection with Evolution of Grain Boundary Structures in Deformed and Annealed Zirconium. A New Approach in Grain Boundary Analysis, J. Appl. Crystallogr., 2013, 46(2), p 483–492

    Article  Google Scholar 

  44. N. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat, EBSD Study of Damage Mechanisms in a High-Strength Ferrite-Martensite Dual-Phase Steel, J. Mater. Eng. Perform., 2015, 24(1), p 53–58

    Article  Google Scholar 

  45. H. Ding and Y.C. Shin, Dislocation Density-Based Modeling of Subsurface Grain Refinement with Laser-Induced Shock Compression, Comput. Mater. Sci., 2012, 53(1), p 79–88

    Article  Google Scholar 

  46. R.W. Maruda, G.M. Krolczyk, M. Michalski, P. Nieslony, and S. Wojciechowski, Structural and Microhardness Changes After Turning of the AISI, 1045 Steel for Minimum Quantity Cooling Lubrication, J. Mater. Eng. Perform., 2017, 26(1), p 431–438

    Article  Google Scholar 

  47. M. Chemkhi, D. Retraint, A. Roos, C. Garnier, L. Waltz, C. Demangel, and G. Proust, The Effect of Surface Mechanical Attrition Treatment on Low Temperature Plasma Nitriding of an Austenitic Stainless Steel, Surf. Coat. Technol., 2013, 221, p 191–195

    Article  Google Scholar 

  48. S. Bagherifard, S. Slawik, I. Fernández-Pariente, C. Pauly, F. Mücklich, and M. Guagliano, Nanoscale Surface Modification of AISI, 316L Stainless Steel by Severe Shot Peening, Mater. Des., 2016, 102, p 68–77

    Article  Google Scholar 

  49. Y. Lino, T.Y. Kim, and S.D. Mun, Machined Surface Plastic Strain in Orthogonal Cutting by Subsequent Recrystallizations Technique, Wear, 1996, 199(2), p 211–216

    Article  Google Scholar 

  50. N.B. Moussa, H. Sidhom, and C. Braham, Numerical and Experimental Analysis of Residual Stress and Plastic Strain Distributions in Machined Stainless Steel, Int. J. Mech. Sci., 2012, 65(1), p 82–93

    Article  Google Scholar 

  51. Z. Atmani, B. Haddag, M. Nouari, and M. Zenasni, Combined Microstructure-Based Flow Stress and Grain Size Evolution Models for Multi-physics Modelling of Metal Machining, Int. J. Mech. Sci., 2016, 118, p 77–90

    Article  Google Scholar 

  52. H. Ding and Y.C. Shin, Multi-physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning, J. Mater. Process. Technol., 2013, 213(6), p 877–886

    Article  Google Scholar 

  53. M. Martin, S. Weber, C. Izawa, S. Wagner, A. Pundt, and W. Theisen, Influence of Machining-Induced Martensite on Hydrogen-Assisted Fracture of AISI, Type 304 Austenitic Stainless Steel, Int. J. Hydrogen Energy, 2011, 36(17), p 11195–11206

    Article  Google Scholar 

  54. S.W. Kim, S.S. Hwang, Y.S. Lim, Effect of Residual Strain Induced by Cold Working on PWSCC of Alloy 690, in Transactions of the Korean Nuclear Society Autumn Meeting (2013)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 51375182). The authors thank Analytical and Testing Center of HUST for EBSD measurements and TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, X., Hu, Y. et al. Quantitative Studies of Machining-Induced Microstructure Alteration and Plastic Deformation in AISI 316 Stainless Steel Using EBSD. J. of Materi Eng and Perform 27, 434–446 (2018). https://doi.org/10.1007/s11665-018-3129-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3129-9

Keywords

Navigation