Skip to main content

Advertisement

Log in

Atmospheric Corrosion Behavior and Mechanism of a Ni-Advanced Weathering Steel in Simulated Tropical Marine Environment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Corrosion behavior of Ni-advanced weathering steel, as well as carbon steel and conventional weathering steel, in a simulated tropical marine atmosphere was studied by field exposure and indoor simulation tests. Meanwhile, morphology and composition of corrosion products formed on the exposed steels were surveyed through scanning electron microscopy, energy-dispersive x-ray spectroscopy and x-ray diffraction. Results indicated that the additive Ni in weathering steel played an important role during the corrosion process, which took part in the formation of corrosion products, enriched in the inner rust layer and promoted the transformation from loose γ-FeOOH to dense α-FeOOH. As a result, the main aggressive ion, i.e., Cl, was effectively separated in the outer rust layer which leads to the lowest corrosion rate among these tested steels. Thus, the resistance of Ni-advanced weathering steel to atmospheric corrosion was significantly improved in a simulated tropical marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Share Corrosion Data, Nature, 2015, 527, p 441–442

    Article  Google Scholar 

  2. G. Koch, M. Brongers, N. Thompson, Y. Virmani, and J. Payer, Corrosion Cost and Preventive Strategies in the United States, NACE International, Houston, 2002

    Google Scholar 

  3. C. Leygraf and T. Graedel, Atmospheric Corrosion, Wiley, New York, 2000

    Google Scholar 

  4. L. Hao, S. Zhang, J. Dong, and W. Ke, Atmospheric Corrosion Resistance of MnCuP Weathering Steel in Simulated Environments, Corros. Sci., 2011, 53, p 4187–4192

    Article  Google Scholar 

  5. C. Zhang, D. Cai, B. Liao, T. Zhao, and Y. Fan, A Study on the Dual-Phase Treatment of Weathering Steel 09CuPCrNi, Mater. Lett., 2004, 58, p 1524–1529

    Article  Google Scholar 

  6. Y.T. Ma, Y. Li, and F.H. Wang, Weatherability of 09CuPCrNi Steel in a Tropical Marine Environment, Corros. Sci., 2009, 51, p 1725–1732

    Article  Google Scholar 

  7. Y.H. Qian, C.H. Ma, D. Niu, J.J. Xu, and M.S. Li, Influence of Alloyed Chromium on the Atmospheric Corrosion Resistance of Weathering Steels, Corros. Sci., 2013, 74, p 424–429

    Article  Google Scholar 

  8. W. Han, C. Pan, Z.Y. Wang, and G.C. Yu, A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to Outdoor Wet-Dry Cyclic Condition, Corros. Sci., 2014, 88, p 89–100

    Article  Google Scholar 

  9. J. Wang, Z.Y. Wang, and W. Ke, A Study of the Evolution of Rust on Weathering Steel Submitted to the Qinghai Salt Lake Atmospheric Corrosion, Mater. Chem. Phys., 2013, 139, p 225–232

    Article  Google Scholar 

  10. I. Sugimoto and K. Kita, Evaluation of Applicability for Ni-Advanced Weathering Steels and Bridge High-Performance Steels to Railway Steel Bridges, Quart, Rep. Railw. Tech. Res. Inst. Jpn., 2010, 51, p 33–37

    Google Scholar 

  11. T. Murata, Weathering Steel, Uhlig’s Corrosion Handbook, R.W. Revie, Ed., Wiley, New York, 2000,

    Google Scholar 

  12. T. Nishimura, H. Katayama, K. Noda, and T. Kodama, Effect of Co and Ni on the Corrosion Behavior of Low Alloy Steels in Wet/Dry Environments, Corros. Sci., 2000, 42, p 1611–1621

    Article  Google Scholar 

  13. Y. Zhou, J. Chen, Y. Xu, and Z. Liu, Effects of Cr, Ni and Cu on the Corrosion Behavior of Low Carbon Microalloying Steel in a Cl Containing Environment, J. Mater. Sci. Technol., 2013, 29, p 168–174

    Article  Google Scholar 

  14. I. Diaz, H. Cano, D. de la Fuente, B. Chico, J.M. Vega, and M. Morcillo, Atmospheric Corrosion of Ni-Advanced Weathering Steels in Marine Atmospheres of Moderate Salinity, Corros. Sci., 2013, 76, p 348–360

    Article  Google Scholar 

  15. X.Q. Cheng, Y.W. Tian, X.G. Li, and C. Zhou, Corrosion Behavior of Nickel-Containing Weathering Steel in Simulated Marine Atmospheric Environment, Mater. Corros., 2014, 65, p 1033–1037

    Article  Google Scholar 

  16. H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, and D. de la Fuente, Characterization of Corrosion Products Formed on Ni 2.4 wt%–Cu 0.5 wt%–Cr 0.5 wt% Weathering Steel Exposed in Marine Atmospheres, Corros. Sci., 2014, 87, p 438–451

    Article  Google Scholar 

  17. X.Q. Cheng, Z. Jin, M. Liu, and X.G. Li, Optimizing the Nickel Content in Weathering Steels to Enhance Their Corrosion Resistance in Acidic Atmospheres, Corros. Sci., 2017, 115, p 135–142

    Article  Google Scholar 

  18. ISO 9223, Corrosion of Metals and Alloys, Corrosivity of Atmospheres-Classification, 2012

  19. GB/T16545-2015, Chinese National Standard for Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens, China State Bureau of Technical Supervision, Beijing, 2015

    Google Scholar 

  20. M. Morcillo, B. Chico, I. Díaz, H. Cano, and D. de la Fuente, Atmospheric Corrosion Data of Weathering Steels: a Review, Corros. Sci., 2013, 77, p 6–24

    Article  Google Scholar 

  21. K. Bohnenkamp, G. Burgmann, and W. Schwenk, Corrosion atmospherique de l’acier doux, Exposition de l’acier aux intemperies, Galvano-Organo, 1974, 445, p 587–589

    Google Scholar 

  22. R.A. Legault and A.G. Preban, Kinetics of Atmospheric Corrosion of Low-Alloy Steels in an Industrial Environment, Corrosion (NACE), 1975, 31, p 117–122

    Article  Google Scholar 

  23. S. Feliu and M. Morcillo, Atmospheric Corrosion Testing in Spain, Atmospheric Corrosion, W.H. Ailor, Ed., Wiley, New York, 1982, p 913–922

    Google Scholar 

  24. M. Benarie and F.L. Lipfert, A General Corrosion Function in Terms of Atmospheric Pollutant Concentrations and Rain pH, Atmos. Environ., 1986, 20, p 1947–1958

    Article  Google Scholar 

  25. R.A. Legault and V.P. Pearson, Atmospheric Corrosion in Marine Environments, Corrosion (NACE), 1978, 34, p 433–437

    Article  Google Scholar 

  26. M. Kimura, H. Kihira, N. Ohta, M. Hashimoto, and T. Senuma, Control of Fe(O, OH)6 Nano-network Structures of Rust for High Atmospheric-Corrosion Resistance, Corros. Sci., 2005, 47, p 2499–2509

    Article  Google Scholar 

  27. C.R. Hubbard and R.L. Snyder, RIR-Measurement and Use in Quantitative XRD, Powder Diffr., 1988, 3, p 74–77

    Article  Google Scholar 

  28. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, Composition and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corros. Sci., 2006, 48, p 2799–2812

    Article  Google Scholar 

  29. X.H. Chen, J.H. Dong, E.H. Han, and W. Ke, Effect of Ni on the Ion-Selectivity of Rust Layer on Low Alloy Steel, Mater. Lett., 2007, 61, p 4050–4053

    Article  Google Scholar 

  30. Z.Y. Cui, X.G. Li, C. Man, K. Xiao, C.F. Dong, X. Wang, and Z.Y. Liu, Corrosion Behavior of Field-Exposed 7A04 Aluminum Alloy in the Xisha Tropical Marine Atmosphere, JMEPEG, 2015, 24, p 2885–2897

    Article  Google Scholar 

  31. W. Wu, W.K. Hao, Z.Y. Liu, X.G. Li, C.W. Du, and W.J. Liao, Corrosion Behavior of E690 High-Strength Steel in Alternating Wet-Dry Marine Environment with Different pH Values, JMEPEG, 2015, 24, p 4636–4646

    Article  Google Scholar 

  32. Q.F. Xu, K.W. Gao, Y.B. Wang, and X.L. Pang, Characterization of Corrosion Products Formed on Different Surfaces of Steel Exposed to Simulated Groundwater Solution, Appl. Surf. Sci., 2015, 345, p 10–17

    Article  Google Scholar 

  33. H. Leidheiser, Jr, and S. Music, The Atmospheric Corrosion of Iron as Studied by Mössbauer Spectroscopy, Corros. Sci., 2010, 52, p 695–710

    Article  Google Scholar 

  34. H. Antony, S. Perrin, P. Dillmann, L. Legranda, and A. Chausse, Electrochemical Study of Indoor Atmospheric Corrosion Layers Formed on Ancient Iron Artefacts, Electrochim. Acta, 2007, 52, p 7754–7759

    Article  Google Scholar 

  35. J. Monnier, D. Neff, S. Reguer, P. Dillman, L. Bellot-Gurlet, E. Leroy, E. Foy, L. Legrand, and J. Guillot, A Corrosion Study of the Ferrous Medieval Reinforcement of the Amiens Cathedral. Phase Characterisation and Localisation by Various Microprobes Techniques, Corros. Sci., 2010, 52, p 695–710

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the support of the National Key Research and Development Program of China (No. 2016YFE0203600), National Natural Science Foundation of China (No. 51671028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuequn Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zeng, Z., Cheng, X. et al. Atmospheric Corrosion Behavior and Mechanism of a Ni-Advanced Weathering Steel in Simulated Tropical Marine Environment. J. of Materi Eng and Perform 26, 6075–6086 (2017). https://doi.org/10.1007/s11665-017-3043-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-3043-6

Keywords

Navigation