Skip to main content
Log in

The Microstructure and Gamma Prime Distributions in Inertia Friction Welded Joint of P/M Superalloy FGH96

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A gamma prime (γ′) precipitation (~35% in volume)-hardened powder metallurgy (P/M) superalloy FGH96 was welded using inertia friction welding (IFW). The microstructure and γ′ distributions in the joints in two conditions, hot isostatic pressed state and solution-treated and aged state, were characterized. The recrystallization of grains, the dissolution and re-precipitation of γ′ in the joints were discussed in terms of the temperature evolutions which were calculated by finite element model analysis. Regardless of the initial states, fully recrystallized fine grain structure formed at welded zone. Meanwhile, very fine γ′ precipitations were re-precipitated at the welded zone. These recrystallized grain structure and fine re-precipitated γ′ resulted in increasing hardness of IFW joint while making the hardness dependent on the microstructure and γ′ precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.Y. Li, J.F. Sun, M.C. Hardy, H.E. Evans, S.J. Williams, T.J.A. Doel, and P. Bowen, Effects of Microstructure on High Temperature Dwell Fatigue Crack Growth in a Coarse Grain PM Nickel Based Superalloy, Acta Mater., 2015, 90, p 355–369

    Article  Google Scholar 

  2. L. Zheng, M. Zhang, and J. Dong, Oxidation Behavior and Mechanism of Powder Metallurgy Rene95 Nickel Based Superalloy Between 800 and 1000 °C, Appl. Surf. Sci., 2010, 256(24), p 7510–7515

    Article  Google Scholar 

  3. S.G. Tian, Y. Liu, X.M. Zhou, Z.G. Zhao, X.Y. Bao, and W.X. Wang, Creep Behaviors of FGH95 Powder Ni-Base Superalloy, Chin. J. Aeronaut., 2009, 22(4), p 444–448

    Article  Google Scholar 

  4. W.P. Yang, G.Q. Liu, K. Wu, and B.F. Hu, Influence of Sub-solvus Solution Heat Treatment on Morphological Instability in a New Ni-Cr-Co-Based Powder Metallurgy Superalloy, J. Alloys Compd., 2014, 582, p 515–521

    Article  Google Scholar 

  5. J. Xie, S. Tian, L.J. Shang, and X. Zhou, Creep Behaviors and Role of Dislocation Network in a Powder Metallurgy Ni-Based Superalloy During Medium-Temperature, Mater. Sci. Eng. A, 2014, 606, p 304–312

    Article  Google Scholar 

  6. C.J. Wu, Y. Tao, and J. Jia, Microstructure and Properties of an Advanced Nickel-Base PM Superalloy, J. Iron Steel Res., 2014, 21(12), p 1152–1157

    Article  Google Scholar 

  7. M. Zhang, F. Li, Z. Yuan, J. Li, and S. Wang, Effect of Heat Treatment on the Micro-indentation Behavior of Powder Metallurgy Nickel Based Superalloy FGH96, Mater. Des., 2013, 49, p 705–715

    Article  Google Scholar 

  8. Y.L. Gu, C.H. Tao, and Y.H. He, Thermomechanical Fatigue Behavior of Powder Metallurgical Nickel Based Superalloy FGH96, J. Iron Steel Res., 2010, 16(6), p 74–79

    Article  Google Scholar 

  9. M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter, Inertia Welding Nickel-Based Superalloy. I. Metallurgical Characterization, Metall. Mater. Trans. A, 2002, 33A(10), p 3215–3225

    Article  Google Scholar 

  10. M. Preuss, J.W.L. Pang, P.J. Withers, and G.J. Baxter, Inertia Welding Nickel-Based Superalloy: Part II. Residual Stress Characterization, Metall. Mater. Trans. A, 2002, 33(10), p 3227–3234

    Article  Google Scholar 

  11. M.L. Grant, P.J. Withers, G. Baxter, and M. Preuss, Thermal Relaxation of Residual Stresses in Nickel-Based Superalloy Inertia Friction Welds, Metall. Mater. Trans. A, 2011, 42A, p 2301–2311

    Google Scholar 

  12. M. Maalekian, E. Kozeschnik, H.P. Brantner, and H. Cerjak, Comparative Analysis of Heat Generation in Friction Welding of Steel Bars, Acta Mater., 2008, 56(12), p 2843–2855

    Article  Google Scholar 

  13. J.S. Tiley, D.W. Mahaffey, T. Alam, T. Rojhirunsakool, O. Senkov, T. Parthasarthy, and R. Banerjee, Strengthening Mechanisms in an Inertia Friction Welded Nickel-Base Superalloy, Mater. Sci. Eng. A, 2016, 662, p 26–35

    Article  Google Scholar 

  14. M. Preuss, P.J. Withers, and G.J. Baxter, A Comparison of Inertia Friction Welds in Three Nickel Base Superalloys, Mater. Sci. Eng. A, 2006, 437(1), p 38–45

    Article  Google Scholar 

  15. O. Iracheta, C.J. Bennett, and W. Sun, Characterization of Material Property Variation Across an Inertia Friction Welded CrMoV Steel Component Using the Inverse Analysis of Nanoindentation Data, Int. J. Mech. Sci., 2016, 107, p 253–263

    Article  Google Scholar 

  16. Z. Yuanzhi, Y. Zhimin, L. Dongmei, L. Junchao, and Z. Xiang, Microstructure and Property of Ni76Cr19AlTi Side in Inertia Friction Weld Joint of the Superalloy Ni76Cr19AlTi and the Martensite Stainless Steel 4Cr10Si2Mo, ISIJ Int., 2010, 50(11), p 1666–1670

    Article  Google Scholar 

  17. Z. Yuanzhi, Z. Zhe, X. Zhidong, Y. Zhimin, W. Zhifang, and Y. Wenqing, Microstructural Evolution in 4Cr10Si2Mo at the 4Cr10Si2Mo/Nimomic 80A Weld Joint by Inertia Friction Welding, J. Alloys Compd., 2009, 476, p 341–347

    Article  Google Scholar 

  18. F. Daus, H.Y. Li, G. Baxter, S. Bray, and P. Bowen, Mechanical and Microstructural Assessments of RR1000 to IN718 Inertia Welds: Effects of Welding Parameters, Mater. Sci. Technol., 2007, 23(12), p 1424–1432

    Article  Google Scholar 

  19. L. D’Alvise, E. Massoni, and S.J. Walloe, Finite Element Modelling of the Inertia Friction Welding Process Between Dissimilar Materials, J. Mater. Process. Technol., 2002, 125-126, p 387–391

    Article  Google Scholar 

  20. B. Grant, M. Preuss, P.J. Withers, G. Baxter, and M. Rowlson, Finite Element Process Modelling of Inertia Friction Welding Advanced Nickel-Based Superalloy, Mater. Sci. Eng. A, 2009, 513-514(C), p 366–375

    Article  Google Scholar 

  21. M. Kessler, S. Suenger, M. Haubold, and M.F. Zaeh, Modeling of Upset and Torsional Moment During Inertia Friction Welding, J. Mater. Process. Technol., 2016, 227, p 34–40

    Article  Google Scholar 

  22. L. Wang, M. Preuss, P.J. Withers, G. Baxter, and P. Wilson, Energy-Input-Based Finite-Element Process Modeling of Inertia Welding, Metall. Mater. Trans. B, 2005, 36(4), p 513–523

    Article  Google Scholar 

  23. R.P. Turner, D. Howe, B. Thota, R.M. Ward, H.C. Basoalto, and J.W. Brooks, Calculating the Energy Required to Undergo the Conditioning Phase of a Titanium Alloy Inertia Friction Weld, J. Manuf. Process., 2016, 24, p 186–194

    Article  Google Scholar 

  24. C. Liu, H.Y. Zhu, and C.L. Dong, Internal Residual Stress Measurement on Inertia Friction Welding of Nickel-Based Superalloy, Sci. Technol. Weld. Join., 2014, 19(5), p 408–415

    Article  Google Scholar 

  25. L.F. Nie, L.W. Zhang, Z. Zhu, and W. Xu, Microstructure Evolution Modeling of FGH96 Superalloy During Inertia Friction Welding Process, Finite Elem. Anal. Des., 2014, 80, p 63–68

    Article  Google Scholar 

  26. D.W. Mahaffey, O.N. Senkov, R. Shivpuri, and S.L. Semiatin, Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247, Metall. Mater. Trans. A, 2016, 47(8), p 3981–4000

    Article  Google Scholar 

  27. C. Zhang, L. Zhang, M. Li, W. Shen, and S. Gu, Effects of Microstructure and Gamma’ Distribution on the Hot Deformation Behavior for a Powder Metallurgy Superalloy FGH96, J. Mater. Res., 2014, 29(23), p 2799–2808

    Article  Google Scholar 

  28. Z.W. Huang, H.Y. Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, and G. Baxter, Inertia Friction Welding Dissimilar Nickel-Based Superalloys Alloy 720Li to IN718, Metall. Mater. Trans. A, 2007, 38(7), p 1608–1620

    Article  Google Scholar 

  29. Y.Q. Ning, M.W. Fu, and W. Yao, Recrystallization of the Hot Isostatic Pressed Nickel-Base Superalloy FGH4096. II: Characterization and Application, Mater. Sci. Eng. A, 2012, 539, p 101–106

    Article  Google Scholar 

  30. Y.Q. Ning, Z.K. Yao, M.W. Fu, and H.Z. Guo, Recrystallization of the Hot Isostatic Pressed Nickel-Base Superalloy FGH4096: I. Microstructure and Mechanism, Mater. Sci. Eng. A, 2011, 528(28), p 8065–8070

    Article  Google Scholar 

  31. C.L. Qiu, M.M. Attallah, X.H. Wu, and P. Andrews, Influence of Hot Isostatic Pressing Temperature on Microstructure and Tensile Properties of a Nickel-Based Superalloy Powder, Mater. Sci. Eng. A, 2013, 564, p 176–185

    Article  Google Scholar 

  32. Y.Q. Chen, E. Francis, J. Robson, M. Preuss, and S.J. Haigh, Compositional Variations for Small-Scale Gamma Prime (γ’) Precipitates Formed at Different Cooling Rates in an Advanced Ni-Based Superalloy, Acta Mater., 2015, 85, p 199–206

    Article  Google Scholar 

  33. Y.Q. Chen, T.J.A. Slater, E.A. Lewis, E.M. Francis, M.G. Burke, M. Preuss, and S.J. Haigh, Measurement of Size-Dependent Composition Variations for Gamma Prime (‘) Precipitates in an Advanced Nickel-Based Superalloy, Ultramicroscopy, 2014, 144, p 1–8

    Article  Google Scholar 

  34. Z.W. Huang, H.Y. Li, G. Baxter, S. Bray, and P. Bowen, Electron Microscopy Characterization of the Weld Line Zones of an Inertia Friction Welded Superalloy, J. Mater. Process. Technol., 2011, 211(12), p 1927–1936

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of China and the open fund of the Key Laboratory for Metallurgical Equipment and Control of Ministry of Education in WUHAN University of Science and Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Shen, W., Zhang, L. et al. The Microstructure and Gamma Prime Distributions in Inertia Friction Welded Joint of P/M Superalloy FGH96. J. of Materi Eng and Perform 26, 1581–1588 (2017). https://doi.org/10.1007/s11665-017-2601-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2601-2

Keywords

Navigation