Skip to main content
Log in

Relation Between Open Circuit Potential and Polarization Resistance with Rust and Corrosion Monitoring of Mild Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work discusses continuous corrosion assessment from a unique correlation of open circuit potential (OCP) and linear polarization resistance with rust formation on mild steel after prolong exposure in 3.5% NaCl salt fog environment. The OCP measurement and linear polarization tests were carried out of the rusted samples only without the removal of rust. It also discusses the strong influence of the composition, fraction, and morphology of the rust layers with OCP and linear polarization resistance. The rust characterization was done after the measurement of OCP and linear polarization resistance of the rusted steel samples. Therefore, monitoring of both the OCP and linear polarization resistance of the rusted mild steels coupled with rust characterization could be used for easy and dynamic assessment of the nature of corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.M. Cornell and U. Schwertmann, The Iron Oxides : Structure, Properties, Reactions, Occurrences and Uses, 2nd ed., Wiley, KGaA, 2003

    Book  Google Scholar 

  2. Y. Waseda and S. Suzuki, Ed., Characterization of Corrosion Products on Steel Surfaces, Springer, Berlin, 2006

    Google Scholar 

  3. J.K. Saha, Corrosion of Constructional Steels in Marine and Industrial Environment, Springer, Kolkata, 2013

    Book  Google Scholar 

  4. D. de la Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo, Long-Term Atmospheric Corrosion of Mild Steel, Corros. Sci., 2011, 53, p 604–617

    Article  Google Scholar 

  5. T. Misawa, K. Hashimoto, and S. Shimodaira, The Mechanism of Formation of Iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature, Corros. Sci., 1974, 14, p 131–149

    Article  Google Scholar 

  6. T. Misawa, T. Kyuno, W. Suetaka, and S. Shimodaira, The Mechanism of Atmospheric Rusting and the Effect of Cu and P on the Rust Formation of Low Alloy Steels, Corros. Sci., 1971, 11, p 35–48

    Article  Google Scholar 

  7. U.R. Evans, Electrochemical Mechanism of Atmospheric Rusting, Nature, 1965, 206, p 980–982

    Article  Google Scholar 

  8. M. Stratmann and J. Müller, The Mechanism of the Oxygen Reduction on Rust-Covered Metal Substrates, Corros. Sci., 1994, 36, p 327–359

    Article  Google Scholar 

  9. U.R. Evans, Mechanism of Rusting, Corros. Sci., 1969, 9, p 813–821

    Article  Google Scholar 

  10. U.R. Evans and C.A.J. Taylor, Mechanism of Atmospheric Rusting, Corros. Sci., 1972, 12, p 227–246

    Article  Google Scholar 

  11. M. Stratmann, K. Bohnenkamp, and H.J. Engell, An Electrochemical Study of Phase-Transitions in Rust Layers, Corros. Sci., 1983, 23, p 969–985

    Article  Google Scholar 

  12. T. Misawa, K. Asami, K. Hashimoto, and S. Shimodaira, The Mechanism of Atmospheric Rusting and the Protective Amorphous Rust on Low Alloy Steel, Corros. Sci., 1974, 14, p 279–289

    Article  Google Scholar 

  13. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, COMPOSITION and Protective Ability of Rust Layer Formed on Weathering Steel Exposed to Various Environments, Corros. Sci., 2006, 48, p 2799–2812

    Article  Google Scholar 

  14. R. Baboian, Ed., Corrosion Tests and Standards: Application and Interpretation, 2nd ed., ASTM International, West Conshohocken, 2005

    Google Scholar 

  15. R. Huang, J.-J. Chang, and J.-K. Wu, Correlation Between Corrosion Potential and Polarization Resistance of Rebar in Concrete, Mater. Lett., 1996, 28, p 445–450

    Article  Google Scholar 

  16. R.P. Khatri, V. Sirivivatnanon, and P. Heeley, Critical Polarization Resistance in Service Life Determination, Cem. Concr. Res., 2004, 34, p 829–837

    Article  Google Scholar 

  17. K.B. Oldham and F. Mansfeld, Corrosion Rates from Polarization Curves: A New Method, Corros. Sci., 1973, 13, p 813–819

    Article  Google Scholar 

  18. J.R. Scully, Polarization Resistance Method for Determination of Instantaneous Corrosion Rates, Corrosion, 2000, 56, p 199–217

    Article  Google Scholar 

  19. H. Song and V. Saraswathy, Corrosion Monitoring of Reinforced Concrete Structures—A Review, Int. J. Electrochem. Sci., 2007, 2, p 1–28

    Google Scholar 

  20. B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications, VCH mbH, Weinheim, 1995

    Book  Google Scholar 

  21. C.J. Strachan, T. Rades, K.C. Gordon, and J. Rantanen, Raman Spectroscopy for Quantitative Analysis of Pharmaceutical Solids, J. Pharm. Pharmacol., 2007, 59, p 179–192

    Article  Google Scholar 

  22. A. Raman, S. Nasrazadani, and L. Sharma, Morphology of Rust Phases Formed on Weathering Steels in Various Laboratory Corrosion Tests, Metallography, 1989, 22, p 79–96

    Article  Google Scholar 

  23. R.A. Antunes, R.U. Ichikawa, L.G. Martinez, and I. Costa, Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests, Int. J. Corros. 2014 (2014), Article ID 419570, 1-9

  24. R. Balasubramaniam, A.V. Ramesh Kumar, and P. Dillmann, Characterization of Rust on Ancient Indian Iron, Curr. Sci., 2003, 85, p 1546–1555

    Google Scholar 

  25. R. Balasubramaniam and A.V. Ramesh, Kumar, Characterization of Delhi Iron Pillar Rust by X-ray Diffraction, Fourier Transform Infrared Spectroscopy and Mossbauer Spectroscopy, Corros. Sci., 2000, 42, p 2085–2101

    Article  Google Scholar 

  26. S.J. Oh, D.C. Cook, and H.E. Townsend, Characterization of Iron Oxide Commenly Formed as Corrosion Products on Steel, Hyperfine Interact., 1998, 112, p 59–65

    Article  Google Scholar 

  27. B. Jegdić, D.M. Dražić, and J.P. Popić, Open Circuit Potentials of Metallic Chromium and Austenitic 304 Stainless Steel in Aqueous Sulphuric Acid Solution and the Influence of Chloride Ions on Them, Corros. Sci., 2008, 50, p 1235–1244

    Article  Google Scholar 

  28. T.P. Hoar, On the Relation Between Corrosion Rate and Polarization Resistance, Corros. Sci., 1967, 7, p 455–458

    Article  Google Scholar 

  29. X. Zhang, S. Yang, W. Zhang, H. Guo, and X. He, Influence of Outer Rust Layers on Corrosion of Carbon Steel and Weathering Steel During Wet—Dry Cycles, Corros. Sci., 2014, 82, p 165–172

    Article  Google Scholar 

  30. K.E. Garcia, C.A. Barrero, A.L. Morales, and J.M. Greneche, Lost iron and Iron Converted into Rust in Steels Submitted to Dry—Wet Corrosion Process, Corros. Sci., 2008, 50, p 763–772

    Article  Google Scholar 

  31. B. Panda, R. Balasubramaniam, and G. Dwivedi, On the Corrosion Behaviour of Novel High Carbon Rail Steels in Simulated Cyclic Wet—Dry Salt Fog Conditions, Corros. Sci., 2008, 50, p 1684–1692

    Article  Google Scholar 

  32. M. Stratmann and K. Hoffmann, In Situ Möβbauer Spectroscopic Studies of Reactions Within Rust Layers, Corros. Sci., 1989, 29, p 1329–1352

    Article  Google Scholar 

  33. Y. Ma, Y. Li, and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51, p 997–1006

    Article  Google Scholar 

  34. M. Morcillo, D. de la Fuente, I. Diaz, and Y.H. Cano, Atmospheric Corrosion of Mild Steel, Rev. Metal., 2011, 47, p 426–444

    Article  Google Scholar 

  35. Q.C. Zhang, J.S. Wu, J.J. Wang, W.L. Zheng, J.G. Chen, and A.B. Li, Corrosion Behavior of Weathering Steel in Marine Atmosphere, Mater. Chem. Phys., 2003, 77, p 603–608

    Article  Google Scholar 

  36. M. Yamashita, H. Nagano, T. Misawa, and H.E. Townsend, Structure of Protective Rust Layers Formed on Weathering Steels by Long-Term Exposure in the Industrial Atmospheres of Japan and North America, ISIJ Int., 1998, 38, p 285–290

    Article  Google Scholar 

  37. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa, The Long Term Growth of the Protective Rust Layer Formed on Weathering Steel by Atmospheric Corrosion During a Quarter of a Century, Corros. Sci., 1994, 36, p 283–299

    Article  Google Scholar 

  38. S. Hara, T. Kamimura, H. Miyuki, and M. Yamashita, Taxonomy for Protective Ability of Rust Layer Using Its Composition Formed on Weathering Steel Bridge, Corros. Sci., 2007, 49, p 1131–1142

    Article  Google Scholar 

  39. G.F. Hays, Now is the Time, World Corros. Organ. (April 2013), 1–2.

  40. V.M. Malhotra and N.J. Carino, Handbook on Nondestructive Testing of Concrete, 2nd ed., ASTM International, West Coshohocken, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Garg, A. & Mondal, K. Relation Between Open Circuit Potential and Polarization Resistance with Rust and Corrosion Monitoring of Mild Steel. J. of Materi Eng and Perform 25, 2969–2976 (2016). https://doi.org/10.1007/s11665-016-2112-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2112-6

Keywords

Navigation