Skip to main content

Advertisement

Log in

Microstructure and Precipitate's Characterization of the Cu-Ni-Si-P Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure of the Cu-Ni-Si-P alloy was investigated by transmission electron microscopy (TEM). The alloy had 551 MPa tensile strength, 226 HV hardness, and 36% IACS electrical conductivity after 80% cold rolling and aging at 450 °C for 2 h. Under the same aging conditions, but without the cold rolling, the strength, hardness, and electrical conductivity were 379 MPa, 216 HV, and 32% IACS, respectively. The precipitates identified by TEM characterization were δ-Ni2Si. Some semi-coherent spherical precipitates with a typical coffee bean contrast were found after aging for 48 h at 450 °C. The average diameter of the observed semi-coherent precipitates is about 5 nm. The morphology of the fracture surface was observed by scanning electron microscopy. All samples showed typical ductile fracture. The addition of P refined the grain size and increased the nucleation rate of the precipitates. The precipitated phase coarsening was inhibited by the small additions of P. After aging, the Cu-Ni-Si-P alloy can gain excellent mechanical properties with 804 MPa strength and 49% IACS conductivity. This study aimed to optimize processing conditions of the Cu-Ni-Si-P alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Zhang, A.A. Volinsky, H.T. Tran, Z. Chai, P. Liu, and B.H. Tian, Effects of Ce Addition on High Temperature Deformation Behavior of Cu-Cr-Zr Alloys, J. Mater. Eng. Perform., 2015, 24, p 3783–3788

    Article  Google Scholar 

  2. S.G. Jia, X.M. Ning, P. Liu, M.S. Zheng, and G.S. Zhou, Age Hardening Characteristics of Cu-Ag-Zr Alloy, Met. Mater. Int., 2009, 15, p 555–558

    Article  Google Scholar 

  3. S. Chenna Krishna, N.K. Gangwar, A.K. Jha, B. Pant, and K.M. George, Enhanced Strength in Cu-Ag-Zr Alloy by Combination of Cold Working and Aging, J. Mater. Eng. Perform., 2014, 23, p 1458–1464

    Article  Google Scholar 

  4. L.M. Bi, P. Liu, X.H. Chen, X.K. Liu, W. Li, and F.C. Ma, Analysis of Phase in Cu-15%Cr-0.24%Zr Alloy, Trans. Nonferrous Met. Soc. China, 2013, 23, p 1342–1348

    Article  Google Scholar 

  5. Y.Q. Long, P. Liu, Y. Liu, W.M. Zhang, and J.S. Pan, Simulation of Recrystallization Grain Growth During Re-aging Process in the Cu-Ni-Si Alloy Based on Phase Field Model, Mater. Lett., 2008, 62, p 3039–3042

    Article  Google Scholar 

  6. Y.L. Jia, M.P. Wang, C. Chen, Q.Y. Dong, S. Wang, and Z. Li, Orientation and Diffraction Patterns of δ-Ni2Si Precipitates in Cu-Ni-Si Alloy, J. Alloys Compd., 2013, 557, p 147–151

    Article  Google Scholar 

  7. H. Xie, L. Jia, and Z.L. Lu, Microstructure and Solidification Behavior of Cu-Ni-Si Alloys, Mater. Charact., 2009, 60, p 114–118

    Article  Google Scholar 

  8. S.Z. Han, J.H. Gu, J.H. Lee, Z.P. Que, J.H. Shin, S.H. Lim, and S.S. Kim, Effect of V Addition on Hardness and Electrical Conductivity in Cu-Ni-Si Alloys, Met. Mater. Int., 2013, 19, p 637–641

    Article  Google Scholar 

  9. E. Donoso, R. Espinoza, M.J. Dianez, and J.M. Criado, Microcalorimetric Study of the Annealing Hardening Mechanism of a Cu-2.8Ni-1.4Si (at%) Alloy, Mater. Sci. Eng., A, 2012, 556, p 612–616

    Article  Google Scholar 

  10. C. Watanabe and R. Monzen, Coarsening of δ-Ni2Si Precipitates in a Cu-Ni-Si Alloy, J. Mater. Sci., 2011, 46, p 4327–4335

    Article  Google Scholar 

  11. Y. Zhang, A.A. Volinsky, Q.Q. Xu, Z. Chai, B.H. Tian, P. Liu, and H.T. Tran, Deformation Behavior and Microstructure Evolution of the Cu-2Ni-0.5Si-0.15Ag Alloy During Hot Compression, Metall. Mater. Trans. A, 2015, 46, p 5871–5876

    Article  Google Scholar 

  12. Q. Lei, Z. Li, M.P. Wang, L. Zhang, Z. Xiao, and Y.L. Jia, The Evolution of Microstructure in Cu-8.0Ni-1.8Si-0.15 Mg Alloy During Aging, Mater. Sci. Eng., A, 2010, 527, p 6728–6733

    Article  Google Scholar 

  13. S.C. Krishna, J. Srinath, A.K. Jha, B. Pant, S.C. Sharma, and K.M. George, Microstructure and Properties of a High-Strength Cu-Ni-Si-Co-Zr Alloy, J. Mater. Eng. Perform., 2013, 22, p 2115–2120

    Article  Google Scholar 

  14. X.P. Xiao, B.Q. Xiong, Q.S. Wang, G.L. Xie, L.J. Peng, and G.X. Huang, Microstructure and Properties of Cu-Ni-Si-Zr Alloy After Thermo Mechanical Treatments, Rare Met., 2013, 32, p 144–149

    Article  Google Scholar 

  15. L. Shen, Z. Li, Z.M. Zhang, Q.Y. Dong, Z. Xiao, Q. Lei, and W.T. Qiu, Effects of Silicon and Thermo-Mechanical Process on Microstructure and Properties of Cu-10Ni-3Al-0.8Si Alloy, Mater. Des., 2014, 62, p 265–270

    Article  Google Scholar 

  16. D.M. Zhao, Q.M. Dong, P. Liu, B.X. Kang, J.L. Huang, and Z.H. Jin, Aging Behavior of Cu-Ni-Si Alloy, Mater. Sci. Eng., A, 2003, 361, p 93–99

    Article  Google Scholar 

  17. C.D. Xia, Y.L. Jia, W. Zhang, K. Zhang, Q.Y. Dong, G.Y. Xu, and M. Wang, Study of deformation and Aging Behaviors of a Hot Rolled-Quenched Cu-Cr-Zr-Mg-Si Alloy During Thermo-Mechanical Treatments, Mater. Des., 2012, 39, p 404–409

    Article  Google Scholar 

  18. D.M. Zhao, Q.M. Dong, P. Liu, B.X. Kang, J.L. Huang, and Z.H. Jin, Structure and Strength of the Age Hardened Cu-Ni-Si Alloy, Mater. Chem. Phys., 2003, 79, p 81–86

    Article  Google Scholar 

  19. J.Y. Cheng, B.B. Tang, F.X. Yu, and B. Shen, Evaluation of Nanoscaled Precipitates in a Cu-Ni-Si-Cr Alloy During Aging, J. Alloys Compd., 2014, 614, p 189–195

    Article  Google Scholar 

  20. Q. Lei, Z. Li, C. Dai, J. Wang, X. Chen, J.M. Xie, W.W. Yang, and D.L. Chen, Effect of Aluminum on Microstructure and Property of Cu-Ni-Si Alloys, Mater. Sci. Eng., A, 2013, 572, p 65–74

    Article  Google Scholar 

  21. I. Altenberger, H.A. Kuhn, M. Gholami, M. Mhaede, and L. Wagner, Ultrafine-Grained Precipitation Hardened Copper Alloys by Swaging or Accumulative Roll Bonding, Metals, 2015, 5, p 763–776

    Article  Google Scholar 

  22. S.A. Lockyer and F.W. Noble, Precipitate Structure in a Cu-Ni-Si Alloy, J. Mater. Sci., 1994, 29, p 218–226

    Article  Google Scholar 

  23. Q. Lei, Z. Li, M.P. Wang, L. Zhang, S. Gong, Z. Xiao, and Z.Y. Pan, Phase Transformations Behavior in a Cu-8.0Ni-1.8Si Alloy, J. Alloys Compd., 2011, 509, p 3617–3622

    Article  Google Scholar 

  24. T. Hu, J.H. Chen, J.Z. Liu, Z.R. Liu, and C.L. Wu, The Crystallographic and Morphological Evolution of the Strengthening Precipitates in Cu-Ni-Si Alloys, Acta Mater., 2013, 61, p 1210–1219

    Article  Google Scholar 

  25. Y. Zhang, P. Liu, B.H. Tian, S.G. Jia, and Y. Liu, Study on Aging Kinetics of Cu-2.0Ni-0.5Si Alloy, J. Funct. Mater., 2010, 41, p 1827–1830

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (51101052) and the National Science Foundation (IRES 1358088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhang or Alex A. Volinsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tian, B., Volinsky, A.A. et al. Microstructure and Precipitate's Characterization of the Cu-Ni-Si-P Alloy. J. of Materi Eng and Perform 25, 1336–1341 (2016). https://doi.org/10.1007/s11665-016-1987-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1987-6

Keywords

Navigation