Skip to main content
Log in

Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the ‘granular-bright-facet’ area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.J. Kim, H. Shin, H. Park, and J.D. Lim, Investigation into Mechanical Properties of Austempered Ductile Cast Iron (ADI) in Accordance with Austempering Temperature, Mater. Lett., 2008, 62, p 357–360

    Article  Google Scholar 

  2. O. Eric, L. Sidjanin, Z. Miskovic, S. Zec, and M.T. Jovanovic, Microstructure and Toughness of CuNiMo Austempered Ductile Iron, Mater. Lett., 2004, 58, p 2707–2711

    Article  Google Scholar 

  3. M.D. Chapetti, High-Cycle Fatigue of Austempered Ductile Iron (ADI), Int. J. Fatigue, 2007, 29, p 860–868

    Article  Google Scholar 

  4. Y.S. Lerner and G.R. Kingsbury, Wear Resistance Properties of Austempered Ductile Iron, J. Mater. Eng. Perform., 1998, 7, p 48–52

    Article  Google Scholar 

  5. J.W. Zhang, N. Zhang, M.T. Zhang, L.T. Lu, D.F. Zeng, and Q.P. Song, Microstructure and Mechanical Properties of Austempered Ductile Iron with Different Strength Grades, Mater. Lett., 2014, 119, p 47–50

    Article  Google Scholar 

  6. M. Kuna, M. Springmann, K. Madler, P. Hubner, and G. Pusch, Fracture Mechanics Based Design of a Railway Wheel Made of Austempered Ductile Iron, Eng. Fract. Mech., 2005, 72, p 241–253

    Article  Google Scholar 

  7. K. Aslantas and S. Tasgetiren, A Study of Spur Gear Pitting Formation and Life Prediction, Wear, 2004, 257, p 1167–1175

    Article  Google Scholar 

  8. J. Lefevre and K.L. Hayrynen, Austempered Materials for Powertrain Applications, J. Mater. Eng. Perform., 2013, 22, p 1914–1922

    Article  Google Scholar 

  9. I. Marines, X. Bin, and C. Bathias, An understanding of very High Cycle Fatigue of Metals, Int. J. Fatigue, 2003, 25, p 1101–1107

    Article  Google Scholar 

  10. K. Shiozawa, L. Lu, and S. Ishihara, S-N Curve Characteristics and Subsurface Crack Initiation Behaviour in Ultra-Long Life Fatigue of a High Carbon-Chromium Bearing Steel, Fatigue Fract. Eng. Mater. Struct., 2001, 24, p 781–790

    Article  Google Scholar 

  11. T. Sakai, Y. Sato, and N. Oguma, Characteristic S-N Properties of High-Carbon-Chromium-Bearing Steel Under Axial Loading in Long-Life Fatigue, Fatigue Fract. Eng. Mater. Struct., 2002, 25, p 765–773

    Article  Google Scholar 

  12. C. Bathias, There is no Infinite Fatigue life in Metallic Materials, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 559–565

    Article  Google Scholar 

  13. T. Sakai, Historical review of studies on metal fatigue and prologue on ultra-long life fatigue, J. Soc. Mater. Sci. Jpn, 2004, 53, p 586–587

    Google Scholar 

  14. K. Shiozawa, Y. Morii, S. Nishino, and L. Lu, Subsurface Crack Initiation and Propagation Mechanism in High-Strength Steel in a Very High Cycle Fatigue Regime, Int. J. Fatigue, 2006, 28, p 1521–1532

    Article  Google Scholar 

  15. P. Grad, B. Reuscher, A. Brodyanski, M. Kopnarski, and E. Kerscher, Mechanism of Fatigue Crack Initiation and Propagation in the Very High Cycle Fatigue Regime of High-Strength Steels, Scripta Mater., 2012, 67, p 838–841

    Article  Google Scholar 

  16. Y. Murakami, T. Nomoto, and T. Ueda, Factors Influencing the Mechanism of Superlong Fatigue Failure in Steels, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 581–590

    Article  Google Scholar 

  17. J.W. Zhang, K. Shiozawa, L.T. Lu, W. Li, and W.H. Zhang, Fatigue Fracture Behavior of Bearing Steel GCr5 in Very High Cycle Regime, Adv. Mater. Res., 2008, 44–46, p 119–126

    Google Scholar 

  18. M. Bahmani, R. Elliott, and N. Varahram, The Relationship Between Fatigue Strength and Microstructure in an Austempered Cu-Ni-Mn-Mo Alloyed Ductile Iron, J. Mater. Sci., 1997, 32, p 5383–5388

    Article  Google Scholar 

  19. H.P. Feng, S.C. Lee, C.H. Hsu, and J.M. Ho, Study of High Cycle Fatigue of PVD Surface-Modified Austempered Ductile Iron, Mater. Chem. Phys., 1999, 59, p 154–161

    Article  Google Scholar 

  20. C.K. Lin, P.K. Lai, and T.S. Shih, Influence of Microstructure on the Fatigue Properties of Austempered Ductile Irons. 1. High-Cycle Fatigue, Int. J. Fatigue, 1996, 18, p 297–307

    Article  Google Scholar 

  21. M. Tayanc, K. Aztekin, and A. Bayram, The Effect of Matrix Structure on the Fatigue Behavior of Austempered Ductile Iron, Mater. Des., 2007, 28, p 797–803

    Article  Google Scholar 

  22. P. Shanmugam, P.P. Rao, K.R. Udupa, and N. Venkataraman, Effect of Microstructure on the Fatigue-Strength of an Austempered Ductile Iron, J. Mater. Sci., 1994, 29, p 4933–4940

    Article  Google Scholar 

  23. A 897M – 06, Standard Specification for Austempered Ductile Iron Castings, in: Annual Book of ASTM Standards, 2006.

  24. Y. Murakami, Metal Fatigue: Effects of Small Defects and Non-metallic Inclusions, Yokendo Ltd, Tokyo, 1993

    Google Scholar 

  25. J. Luo, R.A. Harding, and P. Bowen, Evaluation of the Fatigue Behavior of Ductile Irons with Various Matrix Microstructures, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2002, 33, p 3719–3730

    Article  Google Scholar 

  26. G.L. Greno, J.L. Otegui, and R.E. Boeri, Mechanisms of Fatigue Crack Growth in Austempered Ductile Iron, Int. J. Fatigue, 1999, 21, p 35–43

    Article  Google Scholar 

  27. T.J. Marrow and H. Cetinel, Short Fatigue Cracks in Austempered Ductile Cast Iron (ADI), Fatigue Fract. Eng. Mater. Struct., 2000, 23, p 425–434

    Article  Google Scholar 

  28. C.K. Lin and C.W. Chang, Influence of Heat Treatment on Fatigue Crack Growth of Austempered Ductile Iron, J. Mater. Sci., 2002, 37, p 709–716

    Article  Google Scholar 

  29. Y. Nadot, J. Mendez, N. Ranganathan, and A.S. Beranger, Fatigue Life Assessment of Nodular Cast Iron Containing Casting Defects, Fatigue Fract. Eng. Mater. Struct., 1999, 22, p 289–300

    Article  Google Scholar 

  30. L. Lu and K. Shiozawa, Effect of Two Step Load Variation on Super-Long Life Fatigue and Internal Crack Growth Behavior Of High Carbon-Chromium Bearing Steel, Trans. Jpn. Soc. Mech. Eng., Part A, 2002, 68, p 1666–1673

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 51305363), the China Postdoctoral Science Foundation (2015M570795) and State Key Laboratory Independent Research of China (No. 2015TPL_T11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, W., Song, Q. et al. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime. J. of Materi Eng and Perform 25, 744–749 (2016). https://doi.org/10.1007/s11665-016-1894-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1894-x

Keywords

Navigation