Skip to main content
Log in

Experimental and Numerical Analysis on the Formability of a Heat-Treated AA1100 Aluminum Alloy Sheet

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The objective of this work is to experimentally and numerically determine the influence of plastic anisotropy on the forming limit curve (FLC) for a heat-treated (300 °C-1 h) AA1100 aluminum alloy sheet. The FLCs were obtained by the Nakajima test, where the anisotropy effect on the FLC was evaluated using hourglass-type samples taken at 0°, 45°, and 90° with respect to the sheet rolling direction. The effect of crystal orientations on the FLC is investigated using three micro-macro averaging schemes coupled to a Marciniak and Kuczynski (MK) analysis: the tangent viscoplastic self-consistent (VPSC), the tuned strength αVPSC, and the full-constraint Taylor model. The predicted limit strains in the left-hand side of the FLC agree well with experimental measurements along the three testing directions, while differences are found under biaxial stretching modes. Particularly, MK-VPSC predicts an unexpected limit strain profile in the right-hand side of the FLC for samples tested along the transverse direction. Only MK-αVPSC, with a tuning factor of 0.2, predicts satisfactorily the set of FLC measurements. Finally, the correlation of the predicted limit strains with the predicted yield surface by each model was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Keeler and W. Backofen, Plastic Instability and Fracture in Sheet Stretched over Rigid Punches, ASM Trans. Q., 1963, 56, p 25–48

    Google Scholar 

  2. G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop, La Metallurgia Italiana (No. 680093), SAE Technical Paper, 1968, 60, p 764–774

  3. S. Stören and J.R. Rice, Localized Necking in Thin Sheet, J. Mech. Phys. Solids, 1975, 23, p 421–441

    Article  Google Scholar 

  4. K. Marciniak and K. Kuczynski, Limit Strains in the Process of Stretch-Forming Sheet Metal, Int. J. Mech. Sci., 1967, 9, p 609–620

    Article  Google Scholar 

  5. R. Chiba, H. Takeuchi, M. Kuroda, T. Hakoyama, and T. Kuwabara, Theoretical and Experimental Study of Forming-Limit Strain of Half-Hard AA1100 Aluminium Alloy Sheet, Comput. Mater. Sci., 2013, 77, p 61–71

    Article  Google Scholar 

  6. K. Inal, K. Neale, and A. Aboutajeddine, Forming Limit Comparison for FCC and BCC Sheets, Int. J. Plast., 2005, 21, p 1255–1266

    Article  Google Scholar 

  7. R. Knockaert, Y. Chastel, and E. Massoni, Forming Limits Prediction Using Rate-Independent Polycrystalline Plasticity, Int. J. Plast., 2002, 18, p 231–247

    Article  Google Scholar 

  8. M. Kuroda and V. Tvergaard, Forming Limit Diagrams for Anisotropic Metal Sheets with Different Yield Criteria, Int. J. Solids Struct., 2000, 37, p 5037–5059

    Article  Google Scholar 

  9. W.B. Lee and X.Y. Wen, A Dislocation-Model of Forming Limit Prediction in the Biaxial Stretching of Sheet Metals, Int. J. Mech. Sci., 2006, 48, p 134–144

    Article  Google Scholar 

  10. P.D. Wu, S.R. MacEwen, D.J. Lloyd, and K.W. Neale, Effect of Cube Texture on Sheet Metal Formability, Mater. Sci. Eng. A, 2004, 364, p 182–187

    Article  Google Scholar 

  11. K. Yoshida, T. Ishizaka, M. Kuroda, and S. Ikawa, The Effects of Texture on Formability of Aluminum Alloy Sheets, Acta Mater., 2007, 55, p 4499–4506

    Article  Google Scholar 

  12. C. Schwindt, F. Schlosser, M.A. Bertinetti, M. Stout, and J.W. Signorelli, Experimental and Visco-Plastic Self-consistent Evaluation of Forming Limit Diagrams for Anisotropic Sheet Metals: An Efficient and Robust Implementation of the M-K Model, Int. J. Plast., 2015. doi:10.1016/j.ijplas.2015.01.005

    Google Scholar 

  13. M.J. Serenelli, M.A. Bertinetti, and J.W. Signorelli, Investigation of the Dislocation Slip Assumption on Formability of BCC Sheet Metals, Int. J. Mech. Sci., 2010, 52, p 1723–1734

    Article  Google Scholar 

  14. M.J. Serenelli, M.A. Bertinetti, and J.W. Signorelli, Study of Limit Strains for FCC and BCC Sheet Metal Using Polycrystal Plasticity, Int. J. Solids Struct., 2011, 48, p 1109–1119

    Article  Google Scholar 

  15. J.W. Signorelli and M.A. Bertinetti, On the Role of Constitutive Model in the Forming Limit of FCC Sheet Metal with Cube Orientations, Int. J. Mech. Sci., 2009, 51, p 473–480

    Article  Google Scholar 

  16. J.W. Signorelli, M.A. Bertinetti, and M.J. Serenelli, Experimental and Numerical Study of the Role of Crystallographic Texture on the Formability of an Electro-galvanized Steel Sheet, J. Mater. Process. Technol., 2012, 212, p 1367–1376

    Article  Google Scholar 

  17. P.D. Wu, K.W. Neale, and V.D. Giessen, On Crystal Plasticity FLD Analysis, Proc. R. Soc. London A, 1997, 453, p 1831–1848

    Article  Google Scholar 

  18. S.H. Choi, J.C. Brem, F. Barlat, and K.H. Oh, Macroscopic Anisotropy in AA5019A Sheets, Acta Mater., 2000, 48, p 1853–1863

    Article  Google Scholar 

  19. H. Yuan, J. Li, D. Cai, Q. Yang, and W. Liu, Quantitative Analysis of Texture Evolution of Direct Chill Cast and Continuous Cast AA1100 Aluminium Alloys During Cold Rolling, Mater. Trans., 2007, 48, p 1886–1890

    Article  Google Scholar 

  20. K. Yoshida, Y. Tadano, and M. Kuroda, Improvement in Formability of Aluminum Alloy Sheet by Enhancing Geometrical Hardening, Comput. Mater. Sci., 2009, 46, p 459–468

    Article  Google Scholar 

  21. M.A. Bertinetti, C. Schwindt, and J.W. Signorelli, Effect of the Cube Orientation on Formability for FCC Materials: A Detailed Comparison Between Full-Constraint and Self-consistent Predictions, Int. J. Mech. Sci., 2014, 87, p 200–217

    Article  Google Scholar 

  22. A.B. Lopes, F. Barlat, J.J. Gracio, J.F.F. Duarte, and E.F. Rauch, Effect of Texture and Microstructure on Strain Hardening Anisotropy for Aluminum Deformed in Uniaxial Tension and Simple Shear, Int. J. Plast., 2003, 19, p 1–22

    Article  Google Scholar 

  23. J.W. Yoon, F. Barlat, J.J. Gracio, and E. Rauch, Anisotropic Strain Hardening Behavior in Simple Shear for Cube Textured Aluminum Sheets, Int. J. Plast., 2005, 21, p 2426–2447

    Article  Google Scholar 

  24. J.W. Yoon, F. Barlat, R.E. Dick, and M.E. Karabin, Prediction of Six or Eight Ears in a Drawn Cup Based on a New Anisotropic Yield Functions, Int. J. Plast, 2006, 22, p 174–193

    Article  Google Scholar 

  25. E. Nakamachi, C.L. Xie, H. Morimoto, K. Morita, and N. Yokoyama, FORMABILITY Assessment of FCC Aluminum Alloy Sheet by Using Elastic/Crystalline Viscoplastic Finite Element Analysis, Int. J. Plast., 2002, 18, p 617–632

    Article  Google Scholar 

  26. C. K. Moy, M. Weiss, J. Xia, G. Sha, S.P. Ringera and G. Ranzia. Influence of heat treatment on the microstructure, texture and formability of 2024 aluminium alloy, Mater. Sci. Eng., 2012, 552A, p 48–60, in English.

  27. J. Hu, J. Jonas, Y. Zhou, and T. Ishikawa, Influence of Damage and Texture Evolution on Limit Strain in Biaxially Stretched Aluminum Alloy Sheets, Mater. Sci. Eng. A, 1998, 251, p 243–250

    Article  Google Scholar 

  28. R. Narayanasamy, R. Ravindran, K. Manonmani, and J. Satheesh, A Crystallographic Texture Perspective Formability Investigation of Aluminium 5052 Alloy Sheets at Various Annealing Temperatures, Mater. Des., 2009, 30, p 1804–1817

    Article  Google Scholar 

  29. K. Velmanirajan, K. Anuradha, A. Syed, R. Abu Thaheer, R. Narayanasamy, R. Madhavan, and S. Suwas, Experimental Investigation of Forming Limit, Void Coalescence and Crystallographic Textures of Aluminum Alloy 8011 Sheet Annealed at Various Temperatures, Arch. Civ. Mech. Eng., 2014, 14, p 398–416

    Article  Google Scholar 

  30. J. Sidor, A. Miroux, R. Petrov, and L. Kestens, Controlling the Plastic Anisotropy in Asymmetrically Rolled Aluminium Sheets, Philos. Mag., 2008, 88, p 3779–3792

    Article  Google Scholar 

  31. S. Bruschi, T. Altan, D. Banabic, P.F. Bariani, A. Brosius, J. Cao, A. Ghiotti, M. Khraisheh, M. Merklein, and A.E. Tekkaya, Testing and Modeling of Material Behavior and Formability in Sheet Metal Forming, CIRP Ann., 2014, 63, p 727–749

    Article  Google Scholar 

  32. R.A. Lebensohn and C.N. Tomé, A Self-consistent Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zr Alloys, Acta Metall. Mater., 1993, 41, p 2611–2624

    Article  Google Scholar 

  33. J.W. Signorelli, M.A. Bertinetti, and P.A. Turner, Predictions of Forming Limit Diagrams Using a Rate-Dependent Polycrystal Self-consistent Plasticity Model, Int. J. Plast., 2009, 25, p 1–25

    Article  Google Scholar 

  34. F. Bachmann, R. Hielscher, and H. Schaeben, Texture Analysis with MTEX—Free and Open Source Software Toolbox, Solid State Phenom., 2010, 160, p 63–68

    Article  Google Scholar 

  35. A. Bragard, J. Baret, and H. Bonnarens, A Simplified Technique to Determine FLD at the Onset of Necking, Rapp. Cent. Rech. Mettall., 1972, 33, p 53–63

    Google Scholar 

  36. E.M. Viatkina, W.A. Brekelmans, and M. Geers, A Crystal Plasticity Based Estimate for Forming Limit Diagrams from Textural Inhomogeneities, J. Mater. Proc. Tech., 2005, 168, p 211–218

    Article  Google Scholar 

  37. P.D. Wu, K.W. Neale, E. Van der Giessen, M. Jain, A. Makinde, and S.R. MacEwen, Crystal Plasticity Forming Limit Diagram Analysis of Rolled Aluminum Sheets, Metall. Mater. Trans. A, 1998, 29, p 527–535

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by CONICYT (Fondecyt Project No. 1130404 and ECOS-CONICYT Project 2011 C11 E06). This work was funded by the CONICET (PIP 2011-2013 and PICT 2013-0588). The authors would like to thank C. Sobrero and R. Bolmaro for their significant help in the use of the x-ray equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier W. Signorelli.

Appendix

Appendix

To highlight the influence introduced by the fact that the model calibration considers results along RD, we repeated the simulations shown in Fig. 12 but assuming that all the material parameters at the single crystal level were calibrated using tensile test results along TD, and the MK imperfection factor was adjusted according to the corresponding limit strain at the plane strain condition also for TD specimens. The computed results do not exhibit qualitative differences between them, showing that the predicted limit strain profiles are not significantly sensitive to minor differences in the strain-stress behavior. As an example, Fig. 16 shows comparatively the limit strains values calculated using the MK-αVPSC model calibrated using RD or TD experimental data. Similar remarks can be done for the other two polycrystalline homogenization schemes used in the simulations (i.e., tangent VPSC and FC models) and for the diagonal direction (DD), considering either the power or saturation hardening law.

Fig. 16
figure 16

Predicted forming limit curves along RD, DD, and TD. (Solid symbol) experimental data and (open symbol) for MK-FC, MK-αVPSC, and MK-VPSC simulations. Model calibrated along TD

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán, A.I., Signorelli, J.W., Celentano, D.J. et al. Experimental and Numerical Analysis on the Formability of a Heat-Treated AA1100 Aluminum Alloy Sheet. J. of Materi Eng and Perform 24, 4156–4170 (2015). https://doi.org/10.1007/s11665-015-1684-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1684-x

Keywords

Navigation