Skip to main content
Log in

Initial Atmospheric Corrosion of Carbon Steel in Industrial Environment

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The initial corrosion behavior of carbon steel subjected to Shenyang industrial atmosphere has been investigated by weight-loss measurement, scanning electron microscopy observation, x-ray diffraction, auger electron spectroscopy, and electron probe microanalysis. The experimental results reveal that the corrosion kinetics of the initial corrosion of carbon steel in industrial atmosphere follows empirical equation D = At n, and there is a corrosion rate transition from corrosion acceleration to deceleration; the corrosion products are composed of γ-FeOOH, α-FeOOH, Fe3O4, as well as FeS which is related to the existence of sulfate-reducing bacteria in the rust layers. The effect of dust particles on the corrosion evolution of carbon steel has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.G. Castano, C.A. Botero, A.H. Restrepo, E.A. Agudelo, E. Correa, and F. Echeverria, Atmospheric corrosion of carbon steel in Colombia, Corros. Sci., 2010, 52, p 216–223

    Article  Google Scholar 

  2. J.-P. Cai and S.B. Lyon, A mechanistic study of initial atmospheric corrosion kinetics using electrical resistance sensors, Corros. Sci., 2005, 47, p 2956–2973

    Article  Google Scholar 

  3. M. Itagaki, R. Nozue, K. Watanabe, H. Katayama, and K. Noda, Electrochemical impedance of thin rust film of low-alloy steels, Corros. Sci., 2004, 46, p 1301–1310

    Article  Google Scholar 

  4. I.M. Allam, J.S. Arlow, and H. Saricimen, Initial stages of atmospheric corrosion of steel in the Arabian Golf, Corros. Sci., 1991, 32, p 417–432

    Article  Google Scholar 

  5. Z.F. Wang, J.R. Liu, L.X. Wu, R.D. Han, and Y.Q. Sun, Study of the corrosion behavior of weathering steels in atmospheric environments, Corros. Sci., 2013, 67, p 1–10

    Article  Google Scholar 

  6. F. Corvo, A.D. Torrens, N. Betancourt, J. Perez, and E. Gonzalez, Indoor atmospheric corrosion in Cuba. A report about indoor localized corrosion, Corros. Sci., 2007, 49, p 418–435

    Article  Google Scholar 

  7. J. Wang, Z.Y. Wang, and W. Ke, Characterization of rust formed on carbon steel after exposure to open atmosphere in Qinghai salt lake region, Corros. Eng. Sci. Technol., 2012, 47, p 125–130

    Article  Google Scholar 

  8. W. Han, G.C. Yu, Z.Y. Wang, and J. Wang, Characterization of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation, Corros. Sci., 2007, 49, p 2920–2935

    Article  Google Scholar 

  9. Y.T. Ma, Y. Li, and F.H. Wang, The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment, Corros. Sci., 2010, 52, p 1796–1800

    Article  Google Scholar 

  10. B.Y.R. Surnam and C.V. Oleti, Atmospheric corrosion in Mauritius, Corros. Eng. Sci. Technol., 2012, 47, p 446–455

    Article  Google Scholar 

  11. V. Diaz and C. Lopez, Discovering key meteorological variables in atmospheric corrosion through an artificial neural network model, Corros. Sci., 2007, 49, p 949–962

    Article  Google Scholar 

  12. T.T.N. Lan, N.T.P. Thoa, R. Nishimura, Y. Tsujino, M. Yokoi, and Y. Maeda, Atmospheric corrosion of carbon steel under field exposure in the southern part of Vietnam, Corros. Sci., 2006, 48, p 179–192

    Article  Google Scholar 

  13. F.I. Wei, Atmospheric corrosion of carbon steels and weathering steels in Taiwan, Br. Corros. J., 1991, 26, p 209–214

    Article  Google Scholar 

  14. M. Morcillo, S. Feliu, and J. Simancas, Deviation from bilogarithmic law for atmospheric corrosion of steel, Br. Corros. J., 1993, 28, p 50–52

    Article  Google Scholar 

  15. H.E. Townstnd and J.C. Zoccola, STP767, Philadelphia, PA, ASTM, 1982, p 45

    Google Scholar 

  16. H. Kihira, T. Senuma, M. Tanaka, K. Nishioka, Y. Fujii, and Y. Sakata, A corrosion prediction method of weathering steel, Corros. Sci., 2005, 47, p 2377–2390

    Article  Google Scholar 

  17. X.H. Chen, J.H. Dong, E.H. Han, and W. Ke, Effect of Al alloying on corrosion performance of steel, Corros. Eng. Sci. Technol., 2007, 42, p 224–231

    Article  Google Scholar 

  18. G.C. Liu, J.H. Dong, E.H. Han, and W. Ke, Progress in research on rust layer of weathering steel, Corros. Sci. Prot. Technol., 2006, 18, p 268–272

    Google Scholar 

  19. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, A study of the evolution of rust on Mo-Cu-bearing fire-resistance steel submitted to simulated atmospheric corrosion, Corros. Sci., 2012, 54, p 224–250

    Article  Google Scholar 

  20. T. Misawa, K. Asami, K. Hashimoto, and S. Shimodaira, The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel, Corros. Sci., 1974, 14, p 279–289

    Article  Google Scholar 

  21. Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, and J.C. Shih, Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions, Corros. Sci., 2005, 47, p 1001–1021

    Article  Google Scholar 

  22. K.A. Chandler and J.E. Stanners, in: Proceeding of the Second International Congress on Metallic Corrosion, NACE, New York, Houston, TX, 1963, p 325

    Google Scholar 

  23. F.M. Alabbas, C. Williamson, S.M. Bhola, J.R. Spear, D.L. Olson, B. Mishra, and A.E. Kakpovbia, Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80), Int. Biodeterior. Biodegrad., 2013, 78, p 34–42

    Article  Google Scholar 

  24. F.S. Li, M.Z. An, G.Z. Liu, and D.X. Duan, Effect of sulfate-reducing bacteria on the pitting corrosion behavior of 18-8 stainless steel, Acta Metall. Sin., 2009, 45, p 536–540

    Google Scholar 

  25. T.E. Graedel and R.P. Frankenthal, Corrosion mechanism for iron and low alloy steels exposed to atmosphere, J. Electrochem. Soc., 1990, 137, p 2385–2393

    Article  Google Scholar 

  26. T. Kamimura, K. Kashima, K. Sugae, H. Miyuki, and T. Kudo, The role of chloride ion on the atmospheric corrosion of steel and corrosion resistance of Sn-bearing steel, Corros. Sci., 2012, 62, p 34–41

    Article  Google Scholar 

  27. Y.T. Ma, Y. Li, and F.H. Wang, Corrosion of low carbon steel in atmospheric environments of different chloride content, Corros. Sci., 2009, 51, p 997–1006

    Article  Google Scholar 

  28. J.H. Wang, F.I. Wei, Y.S. Chang, and H.C. Shih, The corrosion mechanism of carbon steel and weathering steel in SO2 polluted atmospheres, Mater. Chem. Phys., 1997, 47, p 1–8

    Article  Google Scholar 

  29. F. Samie, J. Tidblad, V. Kucera, and C. Leygraf, Atmospheric corrosion effects of HNO3-comparison of laboratory-exposed copper, zinc and carbon steel, Atmos. Environ., 2007, 41, p 4888–4896

    Article  Google Scholar 

  30. A. Askey, S.B. Lyon, G.E. Thompson, J.B. Johnson, G.C. Wood, P.W. Sage, and M.J. Cooke, The effect of fly-ash particulates on the atmospheric corrosion of zinc and mild steel, Corros. Sci., 1993, 34, p 1055–1081

    Article  Google Scholar 

Download references

Acknowledgments

The investigation is supported by the National Science Fund of China under the contract No. 50499336 and No. 51131007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Pan, C., Wang, Z. et al. Initial Atmospheric Corrosion of Carbon Steel in Industrial Environment. J. of Materi Eng and Perform 24, 864–874 (2015). https://doi.org/10.1007/s11665-014-1329-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1329-5

Keywords

Navigation