Skip to main content
Log in

Experimental Study of the Forces Acting on the Tool in the Friction-Stir Welding of AA 2024 T3 Sheets

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, AA 2024 T3-rolled sheets were joined in butt joint configuration through the friction stir welding process. Different joints were carried out varying the principal process parameters (i.e., tool welding speed and tool rotational speed). The aim of this work was the study and the experimental characterization of the influence of the process parameters on the forces acting on the tool during the FSW process. Furthermore, it was studied the correlation between the forces and the grain size, in particular with the extension of the heat-affected zone. Forces acting along the axis parallel to the tool are actually greater than those acting along welding direction. All the recorded forces are strictly dependant on the process parameters adopted. No correlation has been found between the grain dimension within the weld bead and the recorded forces, while the greater the forces, the narrower the extension of the heat-affected zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.S. Mishra, Z.Y. Ma, Friction Stir Welding and Processing, Materials Science and Engineering: R: Reports, 2005

  2. A. Squillace, A. De Fenzo, G. Giorleo, and F. Bellucci, A Comparison Between FSW and TIG Welding Techniques: Modifications of Microstructure and Pitting Corrosion Resistance in AA 2024-T3 Butt Joints, J. Mater. Process. Technol., 2004, 152(1), p 97–105

    Article  Google Scholar 

  3. A. Astarita, A. Squillace, E. Armentani, and S. Ciliberto, Friction stir welding of AA 2198 T3 rolled sheets in butt configuration, Metall. Ital., 2012, 104(7–8), p 31–40

    Google Scholar 

  4. G. Buffa, L. Fratini, J. Hua, and R. Shivpuri, Friction Stir Welding of Tailored Blanks: Investigation on Process Feasibility, CIRP Ann. Manuf. Technol., 2006, 55(1), p 279–282

    Article  Google Scholar 

  5. P. Ulysse, Three-Dimensional Modelling of the Friction Stir Welding Process, Int. J. Mach. Tools Manuf, 2002, 42, p 1549–1557

    Article  Google Scholar 

  6. P.A. Colegrove and H.R. Shercliff, 2-Dimensional CFD Modelling of Flow Round Profiled FSW Tooling, Sci. Technol. Weld. Join., 2004, 9, p 483–492

    Article  Google Scholar 

  7. G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, A Continuum Based FEM Model for Friction Stir Welding-Model Development, Mater. Sci. Eng. A, 2006, 419, p 389–396

    Article  Google Scholar 

  8. M. Melendez, W. Tang, C. Schmidt, J. C. McClure, A. C. Nunes, L. E. Murr Tool Forces Developed during Friction Stir Welding, Nasa Technical Reports Server, Document ID: 20030071631, 2003

  9. Y. Yang, P. Kalya, R. Landers, and K. Krishnamurthy, Automatic Gap Detection in Friction Stir Butt Welding Operations, Int. J. Mach. Tools Manuf., 2008, 48, p 1161–1169

    Article  Google Scholar 

  10. S. Mandal and J. Rice, Experimental and Numerical Investigation of the Plunge Stage in Friction Stir Welding, J. Mater. Process. Technol., 2008, 203, p 411–419

    Article  Google Scholar 

  11. H. Badarinarayan, Y. Shi, X. Li, and K. Okamoto, Effect of Tool Geometry on Hook Formation and Static Strength of Friction Stir Spot Welded Aluminium 5754-0 Sheets, Int. J. Mach. Tools Manuf., 2009, 49, p 814–823

    Article  Google Scholar 

  12. S. Ciliberto, A. Astarita, and A. Squillace, FSW of T Joints in Overlap Configuration: Process Optimization in Joining Dissimilar Aluminium Alloys for the Aeronautic Application, Surf. Interface Anal, 2013, doi:10.1002/sia.5214

    Google Scholar 

  13. G. Bussu and P.E. Irving, The Role of Residual Stress and Heat Affected Zone Properties on Fatigue Crack Propagation in Friction Stir Welded 2024-T351 Aluminium Joints, Int. J. Fatigue, 2003, 25, p 77–88

    Article  Google Scholar 

  14. C.M. Chen and R. Kovacevic, Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis, Int. J. Mach. Tools Manuf., 2003, 43(13), p 1319–1326

    Article  Google Scholar 

  15. P. Carlone and G.S. Palazzo, Influence of Process Parameters on Microstructure and Mechanical Properties in AA2024-T3 Friction Stir Welding, Metallogr. Microstruct. Anal., 2013, 2(4), p 213–222

    Article  Google Scholar 

  16. E. Lertora, Comparison of AA 2024 T3 Friction Stir Welded and Riveted Overlap Joints with the Addition of a Pressurization Test, Mater. Des., 2013, 49, p 259–266

    Article  Google Scholar 

  17. K.V. Jata and S.L. Semiatin, Continuous Dynamic Recrystallization During Friction Stir Welding of High Strength Aluminum Alloys, Scr. Mater., 2000, 43, p 743–749

    Article  Google Scholar 

  18. M.A. Sutton, A.P. Reynolds, B. Yang, and R. Taylor, Mode I, Fracture and Microstructure for 2024-T3 Friction Stir Welds, Mater. Sci. Eng., 2003, 354, p 6–16

    Article  Google Scholar 

  19. A.S. Franchim, F.F. Fernandez, and D.N. Travessa, Microstructural Aspects and Mechanical Properties of Friction Stir Welded AA2024-T3 Aluminum Alloy Sheet, Mater. Des., 2011, 32, p 4684–4688

    Article  Google Scholar 

  20. A. Astarita, A. Squillace, A. Scala, and A. Prisco, On the Critical Technological Issues of Friction Stir Welding T-Joints of Dissimilar Aluminum Alloys, J. Mater. Eng. Perform, 2012, 21, p 1763–1771. doi:10.1007/s11665-011-0073-3

    Article  Google Scholar 

  21. C. Bitondo, U. Prisco, A. Squilace, P. Buonadonna, and G. Dionoro, Friction-Stir Welding of AA 2198 Butt Joints: Mechanical Characterization of the Process and of the Welds Through DOE Analysis, Int. J. Adv. Manuf. Technol., 2011, 53, p 505–516. doi:10.1007/s00170-010-2879-9

    Article  Google Scholar 

  22. P. Cavaliere, R. Nobile, F.W. Panella, and A. Squillace, Mechanical and Microstructural Behaviour of 2024–7075 Aluminium Alloy Sheets Joined by Friction Stir Welding, Int. J. Mach. Tools Manuf., 2006, 46, p 588–594

    Article  Google Scholar 

  23. M. Assidi, L. Fourment, S. Guerdoux, and T. Nelson, Friction Model for Friction Stir Welding Process Simulation: Calibrations from Welding Experiments, Int. J. Mach. Tools Manuf., 2010, 50, p 143–155

    Article  Google Scholar 

  24. A. Arora, M. Mehta, A. De, and T. DebRoy, Load Bearing Capacity of Tool Pin During Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2012, 61, p 911–920. doi:10.1007/s00170-011-3759-7

    Article  Google Scholar 

  25. J. Trimble and G.E. Monaghan, O’Donnell Force Generation During Friction Stir Welding of AA2024-T3 D, CIRP Ann. Manuf. Technol., 2012, 61, p 9–12

    Article  Google Scholar 

  26. H. Su, C.S. Wu, A. Pittner, and M. Rethmeier, Simultaneous Measurement of Tool Torque, Traverse Force and Axial Force in Friction Stir Welding, J. Manuf. Process., 2013, 15, p 495–500

    Article  Google Scholar 

  27. R. Kumar, K. Singh, and S. Pandey, Process Forces and Heat Input as Function of Process Parameters in AA5083 Friction Stir Welds, Trans. Nonferrous Met. Soc. China, 2012, 22, p 288–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Astarita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astarita, A., Squillace, A. & Carrino, L. Experimental Study of the Forces Acting on the Tool in the Friction-Stir Welding of AA 2024 T3 Sheets. J. of Materi Eng and Perform 23, 3754–3761 (2014). https://doi.org/10.1007/s11665-014-1140-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1140-3

Keywords

Navigation