Skip to main content
Log in

Growth Kinetics of the Fe2B Layers and Adhesion on Armco Iron Substrate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, a kinetic model was suggested to evaluate the boron diffusion coefficient in the Fe2B layers grown on the Armco iron substrate by the powder-pack boriding. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for treatment times ranging from 2 to 8 h. The boron diffusion coefficient in the Fe2B layers was estimated by solving the mass balance equation at the (Fe2B/substrate) interface with an inclusion of boride incubation time. To validate the present model, the simulated value of Fe2B layer thickness was compared with the experimental value obtained at 1253 K for a treatment time of 5 h. The morphology of Fe2B layers was observed by SEM and optical microscopy. Metallographic studies showed that the boride layer has a saw-tooth morphology in all the samples. The layer thickness measurements were done with the help of MSQ PLUS software. The Fe2B phase was identified by x-ray diffraction method. Finally, the adherence of Fe2B layers on the Armco iron substrate was qualitatively evaluated by using the Daimler-Benz Rockwell-C indentation technique. In addition, the estimated value of boron activation energy was compared to the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(v\) :

Boride layer thickness (m)

\(t_{\text{v}}\) :

is the effective growth time of the Fe2B layer (s)

t :

is the treatment time (s)

\(t_{0}^{{{\text{Fe}}_{ 2} {\text{B}}}}\) :

is the boride incubation time (s)

\(Q_{{{\text{Fe}}_{ 2} {\text{B}}}}\) :

the boron activation energy (J/mol)

\(C_{\text{up}}^{{{\text{Fe}}_{ 2} {\text{B}}}}\) :

represents the upper limit of boron content in Fe2B (=60 × 103 mol/m3)

\(C_{\text{low}}^{{{\text{Fe}}_{ 2} {\text{B}}}}\) :

is the lower limit of boron content in Fe2B(=59.8 × 103 mol/m3)

\(C_{\text{ads}}^{\text{B}}\) :

is the adsorbed boron concentration in the boride layer (mol/m3)

\(a_{1} = C_{\text{up}}^{{{\text{Fe}}_{ 2} {\text{B}}}} - C_{\text{low}}^{{{\text{Fe}}_{ 2} {\text{B}}}}\) :

defines the homogeneity range of the Fe2B layer (mol/m3)

\(a_{2} = C_{\text{low}}^{{{\text{Fe}}_{ 2} {\text{B}}}} - C_{0}\) :

is the miscibility gap (mol/m3)

C 0 :

is the terminal solubility of the interstitial solute (\(\approx 0 {\text{ mol/m}}^{3}\))

\(C_{{{\text{Fe}}_{ 2} {\text{B}}}} [x{\kern 1pt} (t)]\) :

is the boron concentration profile in the Fe2B layer (mol/m3)

\(v_{0}\) :

indicates the initial Fe2B layer (m)

ɛ:

is the normalized growth parameter for the (Fe2B/substrate) interface (it has no physical dimensions)

\(D_{{{\text{Fe}}_{ 2} {\text{B}}}}\) :

denotes the diffusion coefficient of boron in the Fe2B phase (m2/s)

\(J_{i} [x(t)],{\text{ (with }}i = {\text{Fe}}_{ 2} {\text{B and Fe)}}\) :

are the fluxes of boron atoms in the (Fe2B/substrate) interface boundary (mol/m2/s)

References

  1. A.K. Sinha, Boriding (boronizing). in ASM Int. Handbook, Materials Park, OH, USA, 4, 1991, p. 437

  2. G. Celebi, M. Ipek, C. Bindal, and A.H. Ucisik, Some Mechanical Properties of Borides Formed on AISI, 8620 Steel, Mater. Forum, 2005, 29, p 456–460

    Google Scholar 

  3. O. Ozdemir, M.A. Omar, M. Usta, S. Zeytin, C. Bindal, and A.H. Ucisik, An Investigation on Boriding Kinetics of AISI, 316 Stainless Steel, Vacuum, 2008, 83, p 175–179

    Article  Google Scholar 

  4. M. Keddam and S.M. Chentouf, A Diffusion Model for Describing the Bilayer Growth (FeB/Fe2B) During the Iron Powder-Pack Boriding, Appl. Surf. Sci., 2005, 252, p 393–399

    Article  Google Scholar 

  5. W. Fichtl, Boronizing and Its Practical Applications, Mater. Eng., 1981, 2, p 276–286

    Google Scholar 

  6. I. Campos-Silva, M. Ortiz-Domínguez, M. Keddam, N. López-Perrusquia, A. Carmona-Vargas, and M. Elías-Espinosa, Kinetics of the Formation of Fe2B Layers in Gray Cast Iron: Effects of Boron Concentration and Boride Incubation Time, Appl. Surf. Sci., 2009, 255, p 9290–9295

    Article  Google Scholar 

  7. P.A. Dearnly and T. Bell, Engineering the Surface with Boron Based Materials, Surf. Eng., 1985, 1, p 203–217

    Article  Google Scholar 

  8. J.R. Davis, Surface Hardening of Steels: Understanding the Basics, 1st ed., ASM International, USA, 2002

    Google Scholar 

  9. Z. Nait Abdellah, M. Keddam, and A. Elias, Evaluation of the Effective Diffusion Coefficient of Boron in the Fe2B Phase in the Presence of Chemical Stresses, Int. J. Mater. Res., 2013, 104, p 260–265

    Article  Google Scholar 

  10. C.M. Brakman, A.W.J. Gommers, and E.J. Mittemeijer, Boriding of Fe and Fe-C, Fe-Cr, and Fe-Ni alloys. Boride-Layer Growth Kinetics, J. Mater. Res, 1989, 4, p 1354–1370

    Article  Google Scholar 

  11. I. Campos-Silva, M. Ortiz-Domínguez, N. López-Perrusquia, A. Meneses-Amador, R. Escobar-Galindo, and J. Martínez-Trinidad, Characterization of AISI, 4140 Borided Steels, Appl. Surf. Sci., 2010, 256, p 2372–2379

    Article  Google Scholar 

  12. I. Campos-Silva, M. Ortiz-Dominguez, H. Cimenoglu, R. Escobar-Galindo, M. Keddam, M. Elias-Espinosa, and N. López-Perrusquia, Diffusion Model for Growth of Fe2B Layer in Pure Iron, Surf. Eng., 2011, 27, p 189–195

    Article  Google Scholar 

  13. I. Campos, O. Bautista, G. Ramírez, M. Islas, J. De La Parra, and L. Zúñiga, Effect of Boron Paste Thickness on the Growth Kinetics of Fe2B Boride Layers During the Boriding Process, Appl. Surf. Sci., 2005, 243, p 429–436

    Article  Google Scholar 

  14. M. Keddam, Computer Simulation of Monolayer Growth Kinetics of Fe2B Phase During the Paste-Boriding Process: Influence of the Paste Thickness, Appl. Surf. Sci., 2006, 253, p 757–761

    Article  Google Scholar 

  15. M. Keddam, M. Ortiz-Domínguez, I. Campos-Silva, and J. Martínez-Trinidad, A Simple Model for the Growth Kinetics of Fe2B Iron Boride on Pure Iron Substrate, Appl. Surf. Sci., 2010, 256, p 3128–3132

    Article  Google Scholar 

  16. M. Keddam and R. Chegroune, A Model for the Growth of Fe2B Layers on a Steel Substrate: Effect of the Surface Boron Concentration, Solid State Phenom., 2011, 170, p 185–189

    Article  Google Scholar 

  17. Z. Nait Abdellah, M. Keddam, R. Chegroune, B. Bouarour, H. Lillia, and A. Elias, Simulation of the Boriding Kinetics of Fe2B Layers on Iron Substrate by Two Approaches, Matériaux et Techniques, 2012, 100, p 581–588

    Article  Google Scholar 

  18. M. Keddam, A Kinetic Model for the Borided Layers by the Paste-Boriding Process, Appl. Surf. Sci., 2004, 236, p 451–455

    Article  Google Scholar 

  19. I. Campos-Silva, N. López-Perrusquia, M. Ortiz-Domínguez, U. Figueroa- López, O.A. Gómes-Vargas, A. Meneses-Amador, and G. Rodríguez-Castro, Characterization of Boride Layers Formed at the Surface of Gray Cast Irons, Kovove Mater., 2009, 47, p 1–7

    Article  Google Scholar 

  20. I. Campos-Silva, M. Ortiz-Domínguez, N. López-Perrusquia, R. Escobar-Galindo, O.A. Gómez-Vargas, and E. Hernández-Sánchez, Determination of Boron Diffusion Coefficients in Borided Tool Steels, Defect Diffus. Forum, 2008, 283–286, p 681–686

    Google Scholar 

  21. L.G. Yu, X.J. Chen, K.A. Khor, and G. Sundararajan, FeB/Fe2B Phase Transformation During SPS Pack-Boriding: Boride Layer Growth Kinetics, Acta Mater., 2005, 53, p 2361–2368

    Article  Google Scholar 

  22. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1990, p 280

    Google Scholar 

  23. H. Okamoto (B-Fe) (boron-iron, J. Phase Equilib. Diffus., 2004, 25, p 297–298

    Article  Google Scholar 

  24. V.I. Dybkov, Reaction Diffusion and Solid State Chemical Kinetics, 2nd ed., Trans Tech Publications, Switzerland, 2010, p 7

    Google Scholar 

  25. W. Jost, Diffusion in Solids, Liquids, Gases, Academic Press Inc, New York, 1960, p 69–72

    Google Scholar 

  26. P. Shewmon, Diffusion in Solids, 2nd ed., Minerals, Metals and Materials Society, USA, 1989, p 40

    Google Scholar 

  27. C. Martini and G. Palombarini, Mechanism of Thermochemical Growth of Iron Borides on Iron, J. Mater. Sci., 2004, 39, p 933–937

    Article  Google Scholar 

  28. A.J. Ninham and I.M. Hutchings, On the morphology of thermochemically produced Fe2B/Fe interfaces, J. Vacuum Sci. Technol., 1986, 4, p 2827–2831

    Article  Google Scholar 

  29. M. Carbucicchio and G. Palombarini, Surface Modifications for Mechanical Applications, Hyperfine Interact., 1994, 83, p 91–110

    Article  Google Scholar 

  30. I. Campos, R. Torres, O. Bautista, G. Ramírez, and L. Zuñiga, Effect of Boron Paste Thickness on the Growth Kinetics of Polyphase Boride Coatings During the Boriding Process, Appl. Surf. Sci., 2006, 252, p 2396–2403

    Article  Google Scholar 

  31. I. Campos-Silva, M. Ortiz-Domínguez, O. Bravo-Bárcenas, M.A. Doñu-Ruiz, D. Bravo-Bárcenas, C. Tapia-Quintero, and M.Y. Jiménez-Reyes, Formation and Kinetics of FeB/Fe2B Layers and Diffusion Zone at the Surface of AISI, 316 Borided Steels, Surf. Coat. Technol., 2010, 205, p 403–412

    Article  Google Scholar 

  32. I. Campos-Silva, D. Bravo-Bárcenas, A. Meneses-Amador, M. Ortiz-Domínguez, H. Cimenoglu, U. Figueroa-López, and J. Andraca-Adame, Growth Kinetics and Mechanical Properties of Boride Layers Formed at the Surface of the ASTM F-75 Biomedical Alloy, Surf. Coat. Technol., 2013, 237, p 402–414

    Article  Google Scholar 

  33. Verein Deutscher Ingenieure Normen. VDI 3198. VDI-Verlag, Dusseldorf, 1991 p 1-8

  34. N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI, 3198 Indentation Test Evaluation of a Reliable Qualitative Control for Layered Compounds, J. Mater. Process. Technol., 2003, 143–144, p 481–485

    Article  Google Scholar 

  35. S. Taktak, Some Mechanical Properties of Borided AISI, H13 and 304 Steels, Mater. Des., 2007, 28, p 1836–1843

    Article  Google Scholar 

  36. S. Taktak and S. Tasgertiren, Identification of Delamination Failure of Boride Layer on Common Cr-Based Steels, J. Mater. Eng. Perform., 2006, 15, p 570–573

    Article  Google Scholar 

  37. I. Campos, J. Oseguera, U. Figueroa, J.A. García, O. Bautista, and G. Kelemenis, Kinetic Study of Boron Diffusion in the Paste-Boriding Process, Mater. Sci. Eng. A, 2003, 352, p 261–265

    Article  Google Scholar 

  38. M. Kulka, N. Makuch, A. Pertek, and L. Maldzinski, Simulation of the Growth Kinetics of Boride Layers Formed on Fe During Gas Boriding in H2-BCl3 Atmosphere, J. Solid State Chem., 2013, 199, p 196–203

    Article  Google Scholar 

  39. H. Planitz, G. Treffer, H. Konig, and G. Marx, Neue Hutte, 1982, 27, p 228–230

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by a grant of CONACyT and PROMEP México. Also, the authors want to thank to Ing. Martín Ortiz Granillo, who is in charge as Director of the Escuela Superior de Ciudad Sahagún which belongs to the Universidad Autónoma del Estado de Hidalgo, México, for all the facilities to accomplish this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elias-Espinosa, M., Ortiz-Domínguez, M., Keddam, M. et al. Growth Kinetics of the Fe2B Layers and Adhesion on Armco Iron Substrate. J. of Materi Eng and Perform 23, 2943–2952 (2014). https://doi.org/10.1007/s11665-014-1052-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1052-2

Keywords

Navigation