Skip to main content
Log in

Experimental Determination of Process Parameters and Material Data for Numerical Modeling of Induction Hardening

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Induction surface hardening is a widely used manufacturing process to improve the mechanical properties of components. However, better process understanding as well as process development requires numerical modeling. The modeling itself depends on the input data in terms of process parameters and the material behavior. Data acquisition is a rather difficult task due to very short processing times, as seen in contour hardening of gears. The article will give an overview over critical aspects regarding the acquisition of input data. A short presentation of the numerical model used to compare experimental and numerical results shall promote better understanding for improving the modeling or reducing the model complexity necessary for good predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Coupard, T. Palin-luc, P. Bristiel, V. Ji, and C. Dumas, Residual Stresses in Surface Induction Hardening of Steels: Comparison Between Experiment and Simulation, Mater. Sci. Eng., A, 2008, 487(1–2), p 328–339

    Google Scholar 

  2. F. Bay, V. Labbe, Y. Favennec, and J. Chenot, A Numerical Model for induction Heating Processes Coupling Electromagnetism and Thermomechanics, Int. J. Numer. Meth. Eng., 2003, 58(6), p 839–867

    Article  Google Scholar 

  3. D. Hömberg, A Mathematical Model for Induction Hardening Including Mechanical Effects, Nonlinear Anal. Real World Appl., 2004, 5(1), p 55–90

    Article  Google Scholar 

  4. M. Melander, Computer Calculations of Residual Stresses due to Induction Hardening, Eigenspannungen: Entstehung-Messung-Bewertung, E. Macherauch and V. Haug, Eds., Oberursel, 1983, p 309–328

  5. M. Melander and J. Nicolov, Heating and Cooling Transformation Diagrams for the Rapid Heat Treatment of Two Alloy Steels, J. Heat Treat., 1985, 4(1), p 32–38

    Article  CAS  Google Scholar 

  6. M. Schwenk, M. Fisk, T. Cedell, J. Hoffmeister, V. Schulze, and L.-E. Lindgren, Process Simulation of Single and Dual Frequency Induction Surface Hardening Considering Magnetic Nonlinearity, Mater. Perform. Charact., 2012, 9(4), p 1–20

    Google Scholar 

  7. V. Rudnev, Handbook of Induction Heating, Marcel Dekker, New York, 2003

    Google Scholar 

  8. J. Rohde and A. Jeppsson, Literature Review of Heat Treatment Simulations with Respect to Phase Transformation, Residual Stresses and Distortion, Scand. J. Metall., 2000, 29(2), p 47–62

    Article  CAS  Google Scholar 

  9. S. Denis, Considering Stress-Phase Transformation Interactions in the Calculation of Heat Treatment Residual Stresses, J. Phys. IV, 1996, 06(C1), p 159–174

    CAS  Google Scholar 

  10. H. Surm, O. Kessler, F. Hoffmann, and H.-W. Zoch, Modelling of Austenitising with Non-Constant Heating Rate in Hypereutectoid Steels, Int. J. Microstruct. Mater. Prop., 2008, 3(1), p 35–48

    CAS  Google Scholar 

  11. G. Besserdich, B. Scholte, H. Mueller, and E. Macherauch, Consequences of Transformation Plasticity on the Development of Residual-Stresses and Distortion During Martensitic Hardening of SAE-4140 Steel Cylinders, Steel Res., 1994, 65(1), p 41–46

    CAS  Google Scholar 

  12. S. Hansson and M. Fisk, Simulations and Measurements of Combined Induction Heating and Extrusion Processes, Finite Elem. Anal. Des., 2010, 46(10), p 905–915

    Article  Google Scholar 

  13. C. Simsir and C.H. Gür, 3D FEM Simulation of Steel Quenching and Investigation of the Effect of Asymmetric Geometry on Residual Stress Distribution, J. Mater. Process. Technol., 2008, 207(1–3), p 211–221

    Article  CAS  Google Scholar 

  14. T. Miokovic, J. Schwarzer, V. Schulze, O. Vohringer, and D. Lohe, Description of Short Time Phase Transformations During the Heating of Steels Based on High-Rate Experimental Data, J. Phys. IV, 2004, 120, p 591–598

    CAS  Google Scholar 

  15. E.J. Dede, Medium and High-Frequency Power Systems for Industrial Induction, Proceedings of the International Symposium on Heating by Electromagnetic Sources, Vol 4, Padua, 2007, p 411–420

  16. D.E. Stutz and S.L. Semiatin, Induction Heat Treatment of Steel, American Society for Metals, Metals Park, OH, 1986

    Google Scholar 

  17. B. Liscic, Heat Transfer Control During Quenching, Mater. Manuf. Process., 2009, 24(7), p 879–886

    Article  CAS  Google Scholar 

  18. E. Troell, H. Kristoffersen, M. Lövgren, and N.-E. Strand, Influence on Quenchant Performance During Induction Hardening, Heat Process., 2010, 8(4), p 329–334

    Google Scholar 

  19. A. Sugianto, M. Narazaki, M. Kogawara, and A. Shirayori, A Comparative Study on Determination Method of Heat Transfer Coefficient Using Inverse Heat Transfer and Iterative Modification, J. Mater. Process. Technol., 2009, 209(10), p 4627–4632

    Article  CAS  Google Scholar 

  20. H.-J. Eckstein, Technologie der Wärmebehandlung von Stahl, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1987

    Google Scholar 

  21. H. Kawaguchi, M. Enokizono, and T. Todaka, Thermal and Magnetic Field Analysis of Induction Heating Problems, J. Mater. Process. Technol., 2005, 161(1–2), p 193–198

    Article  Google Scholar 

  22. R.S. Lakhkar, Y.C. Shin, and M.J.M. Krane, Predictive Modeling of Multi-Track Laser Hardening of AISI, 4140 Steel, Mater. Sci. Eng. A, 2008, 480(1–2), p 209–217

    Google Scholar 

  23. K.D. Maglić, Recommended Measurement Techniques and Practices, Plenum Press, New York, 1992

    Google Scholar 

  24. K. Obergfell, V. Schulze, and O. Vohringer, Layout of a New Thermo-Mechanical Test Device—Experiments in the Short-Time Range, Materialprüfung, 2002, 44(4), p 139–143

    CAS  Google Scholar 

  25. U. Ahrens, H.J. Maier, and A.E.M. Maksoud, Stress Affected Transformation in Low Alloy Steels—Factors Limiting Prediction of Plastic Strains, J. Phys. IV, 2004, 120, p 615–623

    CAS  Google Scholar 

  26. T. Miokovic, V. Schulze, O. Vöhringer, and D. Löhe, Prediction of Phase Transformations During Laser Surface Hardening of AISI, 4140 Including the Effects of Inhomogeneous Austenite Formation, Mater. Sci. Eng. A, 2006, 435–436, p 547–555

    Google Scholar 

  27. M.F. Ashby and K.E. Easterling, The Transformation Hardening of Steel Surfaces by Laser Beams—I. Hypo-Eutectoid Steels, Acta Metall., 1984, 32(11), p 1935–1948

    Article  CAS  Google Scholar 

  28. E. Macherauch and P. Müller, Das sin2-phi-Verfahren der röntgenographischen Spannungsmessung, Z. Angew. Phys., 1961, 13, p 340–345

    Google Scholar 

  29. P. Zwigl and D.C. Dunand, A Non-Linear Model for Internal Stress Superplasticity, Acta Metall. Mater., 1997, 45(12), p 5285–5294

    Article  CAS  Google Scholar 

  30. C. Simsir, M. Dalgiç, T. Lübben, A. Irretier, M. Wolff, and H.W. Zoch, The Bauschinger Effect in the Supercooled Austenite of SAE 52100 Steel, Acta Metall. Mater., 2010, 58(13), p 4478–4491

    Article  CAS  Google Scholar 

  31. J. Grum, Induction Hardening, Handbook of Residual Stress and Deformation, G. Totten, M. Howes, and T. Inoue, Ed., ASM International, Materials Park, OH, 2002, p 220–247

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the German Research Foundation (DFG) within the framework of the graduate school 1483. Further, the authors would like to thank Dr. Martin Fisk and Dr. Tord Cedell for measuring the magnetic hysteresis curves at the Lund University as well as Katharina von Klinski-Wetzel for the specific heat capacity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Schwenk.

Additional information

This article is an invited paper selected from presentations at the 26th ASM Heat Treating Society Conference, held October 31 through November 2, 2011, in Cincinnati, Ohio, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwenk, M., Hoffmeister, J. & Schulze, V. Experimental Determination of Process Parameters and Material Data for Numerical Modeling of Induction Hardening. J. of Materi Eng and Perform 22, 1861–1870 (2013). https://doi.org/10.1007/s11665-013-0566-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0566-3

Keywords

Navigation