Skip to main content
Log in

Coarse-grained Molecular-level Analysis of Polyurea Properties and Shock-mitigation Potential

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Several experimental investigations reported in the open literature clearly established that polyurea (PU), an elastic copolymer, has an unusually high ability to attenuate and disperse shock waves. This behavior of PU is normally attributed to its unique nanometer-scale two-phase microstructure consisting of (high glass-transition temperature, T g) hydrogen-bonded discrete, hard domains dispersed within a (low T g) contiguous soft matrix. However, details regarding the mechanism(s) responsible for the superior shock-wave mitigation capacity of PU are still elusive. In the present study, molecular-level computational methods and tools are used to help us identify and characterize these mechanism(s). Because the shock-wave front structure and propagation involve coordinated motion of a large number of atoms and nano-second to micro-second characteristic times, these phenomena cannot be readily analyzed using all-atom molecular-level modeling and simulation techniques. To overcome this problem, all-atom PU microstructure is coarse-grained by introducing larger particles (beads), which account for the collective degrees of freedom of the constituent atoms, the associated force-field functions determined and parameterized using all-atom computational results, and the resulting coarse-grained model analyzed using conventional molecular-level computational methods and tools. The results thus obtained revealed that a combination of different deformation mechanisms (primarily shock-induced ordering and crystallization of hard domains and coordinated shuffle-like lateral motion of the soft-matrix segments) is most likely responsible for the superior ability of PU to attenuate/disperse shock waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.M. Castagna, A. Pangon, T. Choi, G.P. Dillon, and J. Runt, The Role of Soft Segment Molecular Weight on Microphase Separation and Dynamics of Bulk Polymerized Polyureas, Macromolecules, 2012, 45, p 8438–8444

    Article  CAS  Google Scholar 

  2. M.R. Amini, J.B. Isaacs, and S. Nemat-Nasser, Effect of Pol yurea on the Dynamic Response of Steel Plates, Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics (St. Louis, MO), 2006, p 3-7

  3. M.R. Amini, J.B. Isaacs, and S. Nemat-Nasser, Experimental Investigation of Response of Monolithic and Bilayer Plates to Impulsive Loads, Int. J. Impact Eng., 2010, 37, p 82–89

    Article  Google Scholar 

  4. A.V. Amirkhizi, J. Isaacs, J. McGee, and S. Nemat-Nasser, An Experimentally-based Viscoelastic Constitutive Model for Polyurea, Including Pressure and Temperature Effects, Phil. Mag., 2006, 86, p 5847–5866

    Article  CAS  Google Scholar 

  5. M.R. Amini, A.V. Amirkhizi, and S. Nemat-Nasser, Numerical Modeling of Response of Monolithic and Bilayer Plates to Impulse Loads, Int. J. Impact Eng., 2010, 37, p 90–102

    Article  Google Scholar 

  6. V.H. Balden and G.N. Nurick, Numerical Simulation of the Post-failure Motion of Steel Plates Subject to Blast Loading, Int. J. Impact Eng., 2005, 32, p 14–34

    Article  Google Scholar 

  7. M. Grujicic, W.C. Bell, B. Pandurangan, and T. He, Blast-Wave Impact-Mitigation Capability of Polyurea When used as Helmet Suspension Pad Material, J. Mater. Design, 2010, 31, p 4050–4065

    Article  CAS  Google Scholar 

  8. M. Grujicic, B. Pandurangan, T. He, B.A. Cheeseman, C.-F. Yen, and C.L. Randow, Computational Investigation of Impact Energy Absorption Capability of Polyurea Coatings via Deformation-induced Glass Transition, Mater. Sci. Eng. A, 2010, 527, p 7741–7751

    Article  Google Scholar 

  9. C.M. Roland and R. Casalini, Effect of Hydrostatic Pressure on the Viscoelastic Response of Polyurea, Polymer, 2007, 48, p 5747–5752

    Article  CAS  Google Scholar 

  10. M. Grujicic, B. Pandurangan, T. He, J. Hunt, J. Tarter, and G. Dillon, Development and Parameterization of a Time-invariant (equilibrium) Material Model for Segmented Elastomeric Polyureas, J. Mater. Design Appl., 2011, 225, p 182–194

    CAS  Google Scholar 

  11. R.B. Bogoslovov, C.M. Roland, and R.M. Gamache, Impact-induced Glass-Transition in Elastomeric Coatings, Appl. Phys. Lett., 2007, 90, p 221910

    Article  Google Scholar 

  12. M. Grujicic, W.C. Bell, B. Pandurangan, and P.S. Glomski, Fluid/Structure Interaction Computational Investigation of the Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet, J. Mater. Eng. Perform., 2011, 20, p 877–893

    Article  CAS  Google Scholar 

  13. M. Grujicic, B. Pandurangan, A.E. King, J. Runt, J. Tarter, and G. Dillon, Multi-length Scale Modeling and Analysis of Microstructure Evolution and Mechanical Properties in Polyurea, J. Mater. Sci., 2011, 46, p 1767–1779

    Article  CAS  Google Scholar 

  14. M. Grujicic, B. Pandurangan, W.C. Bell, B.A. Cheeseman, C.-F. Yen, and C.L. Randow, Molecular-level Simulations of Shock Generation and Propagation in Polyurea, Mater. Sci. Eng. A, 2011, 528, p 3799–3808

    Article  Google Scholar 

  15. M. Grujicic, T. He, B. Pandurangan, F.R. Svingala, G.S. Settles, and M.J. Hargather, Experimental Characterization and Material-Model Development for Microphase-segregated Polyurea: An Overview, J. Mater. Eng. Perform., 2011, 21, p 2–16

    Article  Google Scholar 

  16. M. Grujicic, T. He, and B. Pandurangan, Development and Parameterization of an Equilibrium Material Model for Segmented Polyurea, Multidiscip. Model. Mater. Struct., 2011, 7, p 96–114

    CAS  Google Scholar 

  17. M. Grujicic, A. Arakere, B. Pandurangan, A. Grujicic, A.A. Littlestone, and R.S. Barsoum, Computational Investigation of Shock-mitigation Efficacy of Polyurea When Used in a Combat Helmet: A Core Sample Analysis, Multidiscip. Model. Mater. Struct., 2012, 8, p 297–331

    CAS  Google Scholar 

  18. A. Grujicic, M. LaBerge, M. Grujicic, B. Pandurangan, J. Runt, J. Tarter, and G. Dillon, Potential Improvements in Shock-mitigation Efficacy of a Polyurea-Augmented Advanced Combat Helmet: A Computational Investigation, J. Mater. Eng. Perform., 2012, 21, p 1562–1579

    Article  CAS  Google Scholar 

  19. M. Grujicic, B.P. d’Entremont, B. Pandurangan, J. Runt, J. Tarter, and G. Dillon, Concept-level Analysis and Design of Polyurea for Enhanced Blast-Mitigation Performance, J. Mater. Eng. Perform., 2012, 21, p 2024–2037

    Article  CAS  Google Scholar 

  20. M. Grujicic and B. Pandurangan, Meso-scale Analysis of Segmental Dynamics in Micro-phase Segregated Polyurea, J. Mater. Sci., 2012, 47, p 3876–3889

    Article  CAS  Google Scholar 

  21. M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, J. Runt, J. Tarter, and G. Dillon, Molecular-level Computational Investigation of Shock-Wave Mitigation Capability of Polyurea, J. Mater. Sci., 2012, 47, p 8197–8215

    Article  CAS  Google Scholar 

  22. M. Grujicic, B. Pandurangan, W.C. Bell, B.A. Cheeseman, P. Patel, and G.A. Gazonas, Molecular-level Analysis of Shock-Wave Physics and Derivation of the Hugoniot Relations for Soda-Lime Glass, J. Mater. Sci., 2011, 46, p 7298–7312

    Article  CAS  Google Scholar 

  23. B. Arman, A.S. Reddy, and G. Arya, Viscoelastic Properties and Shock Response of Coarse-grained Models of Multi-block Versus Di-block Co-polymers: Insights into Dissipative Properties of Polyurea, Macromolecules, 2012, 45, p 3247–3255

    Article  CAS  Google Scholar 

  24. M. Grujicic, W.C. Bell, B. Pandurangan, B.A. Cheeseman, C. Fountzoulas, P. Patel, D.W. Templeton, and K.D. Bishnoi, The Effect of High-pressure Densification on Ballistic-penetration Resistance of Soda-Lime Glass, J. Mater. Design Appl., 2011, 225, p 298–315

    CAS  Google Scholar 

  25. M. Grujicic, G. Cao and B. Gersten, Atomic-Scale Computations of the Lattice Contribution to Thermal Conductivity of Single-Walled Carbon Nanotubes, Mater. Sci. Eng. B, 2004, 107, p 204–216

    Google Scholar 

  26. M. Grujicic and S.G. Lai, Atomistic simulation of chemical vapor deposition of (111)-oriented diamond film using a kinetic Monte Carlo method, J. Mater. Sci., 1999, 34, p 7–20

    Google Scholar 

  27. M. Grujicic, G. Cao and W. N. Roy, Atomistic Modeling of Solubilization of Carbon Nanotubes by Non-covalent Functionalization with Poly (p-Phenylenevinylene-Co-2, 5-Dioctoxy-m-Phenylenevinylene), Appl. Surf. Sci., 2004, 227, p 349–363

    Google Scholar 

  28. http://www.accelrys.com/mstudio/msmodeling/visualiser.html

  29. H. Sun, COMPASS: An Ab-initio Force-field Optimized for Condensed-Phase Applications—Overview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B., 1998, 102, p 7338–7364

    Article  CAS  Google Scholar 

  30. H. Sun, P. Ren, and J.R. Fried, The Compass Force Field: Parameterization and Validation for Phosphazenes, Comput. Theor. Polym. Sci., 1998, 8, p 229–246

    Article  CAS  Google Scholar 

  31. http://www.accelrys.com/mstudio/ms modeling/discover.html

  32. http://www.accelrys.com/mstudio/msmodeling/amorphouscell.html

  33. J.-P. Hansen and I.R. McDonald, Theory of Simple Liquids, 3rd ed., Academic Press, Amsterdam, The Netherlands, 2005

    Google Scholar 

  34. http://www.matweb.com, accessed on Nov 5, 2012

  35. W. Mock, S. Bartyczak, G. Lee, J. Fedderly, and K. Jordan, Dynamic Properties of Polyurea 1000, Shock Compression of Condensed Matter, American Institute for Physics, Melville, NY, 2009, vol. 1195

Download references

Acknowledgments

The material presented in this article is based on study supported by the Office of Naval Research (ONR) research contract entitled “Elastomeric Polymer-By-Design to Protect the Warfighter Against Traumatic Brain Injury by Diverting the Blast Induced Shock Waves from the Head”, Contract Number 4036-CU-ONR-1125 as funded through the Pennsylvania State University, the Army Research Office (ARO) research contract entitled “Multi-length Scale Material Model Development for Armor-grade Composites”, Contract Number W911NF-09-1-0513, and the Army Research Laboratory (ARL) research contract entitled “Computational Analysis and Modeling of Various Phenomena Accompanying Detonation Explosives Shallow-Buried in Soil” Contract Number W911NF-06-2-0042. The authors are indebted to Drs. Roshdy Barsoum of ONR and Larry C. Russell, Jr. of ARO for their continuing support and interest in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grujicic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grujicic, M., Snipes, J.S., Ramaswami, S. et al. Coarse-grained Molecular-level Analysis of Polyurea Properties and Shock-mitigation Potential. J. of Materi Eng and Perform 22, 1964–1981 (2013). https://doi.org/10.1007/s11665-013-0485-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0485-3

Keywords

Navigation