Skip to main content
Log in

SintClad: A New Approach for the Production of Wear-Resistant Tools

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Tools used in the mineral processing industry are required to feature high wear resistance to facilitate an adequate cost efficiency. These kinds of tools are made of composite materials based on a low-alloyed substrate material and a high-alloyed coating. The coatings can be applied in different ways using production processes like HIP cladding, deposit welding, and composite casting. The article is concerned with the problem of a novel and cost-effective coating alternative: sinter cladding, using the principle of super-solidus liquid-phase sintering (SLPS). Usually SLPS represents a sintering technique, which is used for the compaction of high-alloyed metal powders. However, no recognizable efforts were made to use the SLPS-process for applying a PM-coating on a bulk substrate material. Sinter cladding for the first time uses SLPS to combine the process of powder compaction with the application of a coating to a solid steel substrate into one single step. Another advantage of the process is the possibility to produce massive bulk coatings with thicknesses exceeding 20 mm. This article is original in the scope of question and investigation methods in terms of microstructure, hardness profiles, EDX measurements, diffusion calculations, and computational thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Ißleib, A. Friedel, and I. Lubojanski, Verbundgießen für Verschleißteile—Stand und Zukunftsaussichten, Gießerei-Praxis, 1995, 7/8, p 146–150

    Google Scholar 

  2. K.B. Arnold, T. Heijkoop, G.P. Lloyd, G. Rubenis, and I. Sare, Wear of Cast-Bonded Components in a Coal Pulveriser Mill, Wear, 1997, 203-204, p 663–670

    Article  CAS  Google Scholar 

  3. A. Lange, Verbundgießen für Anwendungen in der Verschleißtechnik, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg

  4. A. Fischer, Hartlegierungen auf Fe-Cr-C-B Basis für die Auftragschweißung, VDI, Zeitschrift, 1985, 127(9), p 323–324

    CAS  Google Scholar 

  5. C. Nissel, Stoffverbunde und Verbundbauteile durch heißisostatisches Pressen (HIP), Zeitschrift Werkstofftechnik, 1985, 16, p 129–134

    Article  Google Scholar 

  6. W. Theisen, HIP Cladding of Tools, The Use of Tool Steels: Experience and Research: Proceedings of the 6th International Tooling Conference, vol. 1, J. Bergström, G. Fredrikkson, M. Johansson, O. Kotik, and F. Thuvander, Eds., Sep 10-13, 2002 (Motala Grafiska), 2002

  7. E. Bayer and H. Seilstorfer, HIP-Werkstofftechnik in der Kunststoffverarbeitung, Metall, 1991, 45(10), p 1001–1006

    CAS  Google Scholar 

  8. P. Harlin and M. Olsson, Starch Consolidation of M3/2 High Speed Steel Powder—Influence of Process Parameters on Resulting Microstructure, Powder Metall., 2007, 50(4), p 345–353

    Article  CAS  Google Scholar 

  9. S. Talacchia, I.J. San Martin, I. Urrutibeaskao, S. Jauregi, H.R. Palma, V. Martinez, and J. Urcola, Increasing Sintering Gate and Avoiding Grain Growth in High Speed Steels by Sintering in Nitrogen Rich Atmospheres, Powder Metall., 1993, 36(4), p 275–280

    CAS  Google Scholar 

  10. S. Giménez, C. Zubizarreta, V. Trabadelo, and I. Iturriza, Sintering Behaviour and Microstructure Development of T42 Powder Metallurgy High Speed Steel Under Different Processing Conditions, Mater. Sci. Eng. A, 2008, 480(1-2), p 130–137

    Article  Google Scholar 

  11. S. Weber, W. Theisen, F. Castro, and A. Pyzalla, Influence of Gas Atmosphere and Hard Particle Addition on the Sintering Behavior of High Alloyed PM Cold Work Tool Steels, Mater. Sci. Eng. A, 2009, 515, p 175–182

    Article  Google Scholar 

  12. H. Hill, S. Weber, S. Siebert, S. Huth, and W. Theisen, Comprehensive Investigations of the Super-Solidus Liquid-Phase Sintering of Two Plastic Mold Steels, Metall. Mater. Trans. A, 2010, 3, p 686–695

    Article  Google Scholar 

  13. D.J. Bolton and J.A. Gant, Microstructural Development and Sintering Kinetics in Ceramic Reinforced High Speed Steel Metal Matrix Composites, Powder Metall. Metal Ceram., 1997, 40(2), p 143–151

    CAS  Google Scholar 

  14. M.R. German, Sintering Theory and Practice, Wiley, New York, 1996

    Google Scholar 

  15. R.M. German, Rheological Model for Viscous Flow Densification During Supersolidus Liquid Phase Sintering, Sci. Sinter., 2006, 38(1), p 27–40

    Article  CAS  Google Scholar 

  16. G. Petzow, Metallographisches, Keramographisches, Plastographisches Ätzen, 6th ed., Gebrüder Bornträger, Stuttgart, 1994

    Google Scholar 

  17. DIN EN ISO 6507-1: Metallische Werkstoffe—Härteprüfung nach Vickers—Teil 1: Prüfverfahren (2004)

  18. A. Borgenstam, A. Engström, L. Höglund, and J. Agren, DICTRA, a Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilib., 2000, 21(3), p 269–280

    Article  CAS  Google Scholar 

  19. A. Schneider and G. Inden, Simulation of the Kinetics of Precipitation Reactions in Ferritic Steels, Acta Mater., 2005, 53, p 519–531

    Article  CAS  Google Scholar 

  20. A.P. Silva, S. Weber, G. Inden, and R.A. Pyzalla, Influence of Hard Particle Addition and Chemical Interdiffusion on the Properties of Hot Extruded Tool Steel Compounds, Mater. Sci. Eng. A, 2009, 516(1-2), p 193–200

    Article  Google Scholar 

  21. Mob2, Mobility Database, Foundation of Computational Thermodynamics. Royal Institute of Technology, Stockholm (1999)

  22. B. Jönsson, Assessment of the Mobility of Carbon in fcc C-Cr-Fe-Ni Alloys, Zeitschrift für Metallkunde, 1994, 85(7), p 502–509

    Google Scholar 

  23. A. Engström and J. Agren, Assessment of Diffusional Mobilities in Face-Centered Cubic Ni-Cr-Al Alloys, Zeitschrift für Metallkunde, 1996, 87(2), p 92–97

    Google Scholar 

  24. P. Franke and G. Inden, An Assessment of the Si Mobility and the Application to Phase Transformations in Silicon Steels, Zeitschrift für Metallkunde, 1997, 88(10), p 795–799

    CAS  Google Scholar 

  25. H. Berns and W. Theisen, Ferrous Materials—Steel and Cast Iron, 1st ed., Springer, Berlin, 2008

    Google Scholar 

  26. R. Tandon, X.Y. Liu, and R.M. German, Role of Initial Powder Characteristics in Supersolidus Liquid Phase Sintering, Adv. Powder Metall. Part. Mater., 1994, 3, p 251–267

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Blüm.

Additional information

This article is an invited submission to JMEP selected from presentations at the Symposia “Wetting, soldering and brazing” and “Diffusion bonding and characterization” belonging to the Topic “Joining” at the European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2011), held September 12-15, 2011, in Montpellier, France, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blüm, M., Hill, H., Moll, H. et al. SintClad: A New Approach for the Production of Wear-Resistant Tools. J. of Materi Eng and Perform 21, 756–763 (2012). https://doi.org/10.1007/s11665-012-0199-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-012-0199-y

Keywords

Navigation