Skip to main content
Log in

Growth of AlN Films and Its Process Development for the Fabrication of Acoustic Devices and Micromachined Structures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

AlN films were grown on silicon substrates by RF reactive magnetron sputtering. At high sputtering powers, (002) preferred orientation as well as Al-N absorption band becomes prominent. The surface roughness and grain size of sputtered films were found to increase with RF power. Surface acoustic wave (SAW) device has been made on the grown (002) oriented piezoelectric AlN film with interdigital transducer (IDT) electrodes spacing corresponding to a wavelength of 60 μm. The centre frequency of the SAW filter was found to be 84.304 MHz, which gives a phase velocity of 5058 m/s with an electromechanical coupling coefficient (K 2) of 0.34%. Low etch rate of AlN films were observed in doped TMAH solution. Three-dimensional suspended Cr/AlN/Cr/SiO2 microstructures were also fabricated by wet chemical etching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.M. Lakin, A Review of Thin-Film Resonator Technology, IEEE Microw. Mag., December 2003, p 61–67

  2. M.B. Assouar, O. Elmazria, M. El Hakiki, P. Alnot, and C. Tiusan, Low Temperature AlN Thin Films Growth for Layered Structure SAW and BAW Devices, 14th IEEE International Symposium on Applications of Ferroelectrics (ISAF-4), 23–27 August 2004, p 43–46

  3. M. B. Assouar, M. El Hakiki, O. Elmazria, P. Alnot, and C. Tiusan (2004) Synthesis and microstructural characterisation of reactive RF magnetron sputtering AlN films for surface acoustic wave filters, Diamond and Related Materials, 13, 1111–1115

    Article  CAS  Google Scholar 

  4. S. Bender, F. L. Dickert, W. Mokwa, and P. Pachatz (2003) Investigations on temperature controlled monolithic integrated surface acoustic wave (SAW) gas sensors, Sens. Actuators B, 93, 164–168

    Article  CAS  Google Scholar 

  5. H. P. Loebl, M. Klee, C. Metzmacher, W. Brand, R. Milsom, and P. Lok (2003) Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators, Mater. Chem. Phys., 79, pp. 143–146.

    Article  CAS  Google Scholar 

  6. H. Yamada, Y. Ushimi, M. Takeuchi, Y. Yoshino, T. Makino, and S. Arai (2004) Improvement of crystallinity of ZnO thin film and electrical characteristics of film bulk acoustic wave resonator by using Pt buffer layer, Vacuum, 74, pp. 689–692.

    Article  CAS  Google Scholar 

  7. M. Schreiter, R. Gabl, D. Pitzer, R. Primig, and W. Wersing (2004) Electro-acoustic hysteresis behaviour of PZT thin film bulk acoustic resonators, J. the European Ceramic Society, 24, 1589–1592

    Article  CAS  Google Scholar 

  8. Z. Li, and W. Gao (2004) ZnO thin films with DC and RF reactive sputtering, Materials Letters, 58, 1363–1370

    Article  CAS  Google Scholar 

  9. B. Paci, A. Generosi, V. R. Albertini, M. Benetti, D. Cannatá, F. D. Pietrantonio, and E. Verona (2007) A study of highly c-axis oriented AlN films for diamond-based surface acoustic wave devices: Bulk structure and surface morphology, Sens. Actuators A, 137, pp. 279–286.

    Article  CAS  Google Scholar 

  10. I. Ingrosso, S. Petroni, D. Altamura, M. De Vittorio, C. Combi, and A. Passaseo (2007) Fabrication of AlN/Si SAW delay lines with very low RF signal noise, Microelectronic Engineering, 84, pp. 1320–1324

    Article  CAS  Google Scholar 

  11. M. Benetti, D. Cannatà, F. Di Pietrantonio, V. Foglietti, and E. Verona, Microbalance Chemical Sensor Based on Thin-Film Bulk Acoustic Wave Resonators, Appl. Phys. Lett., 2005, 87, p. 173504.

    Article  Google Scholar 

  12. J. Olivares, E. Iborra, M. Clement, L. Vergara, J. Sangrador, and A. Sanz-Hervás (2005) Piezoelectric actuation of microbridges using AlN, Sens. Actuators A, 123–124, pp. 590–595.

    Article  Google Scholar 

  13. P.J. French, Integration of Silicon MEMS Devices: Materials and Processing Considerations, Smart Mater. Bull., January 2001, p 7–13

  14. C. L. Huang, K. W. Tay, and L. Wu (2005) Fabrication and performance analysis of film bulk acoustic wave resonators, Materials Letters, 59, pp. 1012–1016.

    Article  CAS  Google Scholar 

  15. R. Mukhiya, A. Bagolini, B. Margesin, M. Zen, and S. Kal (2006) (100) bar corner compensation for CMOS compatible Anisotropic TMAH etching, J. Micromech. Microeng, 16, pp. 2458–2462.

    Article  Google Scholar 

  16. H. Cheng, and P. Hing (2003) The evolution of preferred orientation and morphology of AlN films under various RF sputtering powers, Surface and Coatings Technology, 167, pp. 297–301.

    Article  CAS  Google Scholar 

  17. C. Cheng, Y. Chen, H. Wang, and W. Chen (1996) Low-temperature growth of aluminum nitride thin films on silicon by reactive radio frequency magnetron sputtering, J. Vac. Sci. Technol. A, 14, pp. 2238–2242.

    Article  CAS  Google Scholar 

  18. C. L. Aardahl, J. W. Rogers Jr., H. K. Yun, Y. Ono, D. J. Tweet, and S. T. Hsu (1999) Electrical properties of AlN thin films deposited at low temperature on Si(100), Thin Solid Films, 346, pp. 174–180.

    Article  CAS  Google Scholar 

  19. K. Kusaka, D. Taniguchi, T. Hanabusa, and K. Tominaga (2000) Effect of input power on crystal orientation and residual stress in AlN film deposited by dc sputtering, Vacuum, 59, 806–813.

    Article  CAS  Google Scholar 

  20. J. P. Kar, G. Bose, and S. Tuli (2006) Correlation of electrical and morphological properties of sputtered aluminum nitride films with deposition temperature, Current Applied Physics, 6, pp.873–876.

    Article  Google Scholar 

  21. J. P. Kar, G. Bose, and S. Tuli (2006) A study on the interface and bulk charge density of AlN films with sputtering pressure, Vacuum, 81, pp. 494–498.

    Article  CAS  Google Scholar 

  22. J. P. Kar, G. Bose, and S. Tuli (2006) Influence of nitrogen concentration on grain growth, structural and electrical properties of sputtered aluminum nitride films, Scripta Materialia, 54, pp. 1755–1759.

    Article  CAS  Google Scholar 

  23. H. Matthews, Surface Wave Filters, Wiley Publication, New York, 1977, p 273

  24. C. Campbell, Surface Acoustic Wave Devices and Their Signal Processing Applications, Academic Press Inc., 1989, p 80

  25. H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee, and S. W. Kim (2004) Fabrication of suspended thin film resonator for application of RF bandpass filter, Microelectronics Reliability, 44, 237–243.

    Article  CAS  Google Scholar 

  26. N. Fujitsuka, K. Hamaguchi, H. Funabashi, E. Kawasaki, and T. Fukada (2004) Silicon anisotropic etching without attacking aluminum with Si and oxidizing agent dissolved in TMAH solution, Sens. Actuators A, 114, 510–515

    Article  CAS  Google Scholar 

  27. G. Yan, P. C·H. Chan, I. M. Hsing, R. K. Sharma, J. K·O. Sin, and Y. Wang (2001) An improved TMAH Si-etching solution without attacking exposed aluminum, Sens. Actuators A, 89, 135–141

    Article  CAS  Google Scholar 

  28. U. Schnakenberg, W. Benecke, and P. Lange, IEEE International Conference on Solid-State Sensors and Actuators, June 24–27, 1991, p 815–818

Download references

Acknowledgment

The authors are thankful to Prof. D. T. Shahani for the valuable discussions and support extended by him during the course of this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Kar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, J.P., Bose, G., Tuli, S. et al. Growth of AlN Films and Its Process Development for the Fabrication of Acoustic Devices and Micromachined Structures. J. of Materi Eng and Perform 18, 1046–1051 (2009). https://doi.org/10.1007/s11665-008-9350-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-008-9350-1

Keywords

Navigation