Skip to main content
Log in

Thickness dependent mechanical behavior of submicron aluminum films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mechanical behavior of thin metallic films has been investigated on aluminum films deposited on a flexible polyimide substrate. Aluminum thin films exhibit a higher tensile strength than bulk aluminum. As film thickness decreases from 480 to 60 nm tensile strength increases from 196 to 408 MPa. These mechanical behaviors are correlated with the microstructure and its evolution with the thickness of aluminum thin films. Films are consisted of fine columnar grains and average grain size increases monotonically with the film thickness. The volume fraction of (111)-textured grains increases and the dispersion of texture axis becomes narrow as the film thickens. The relative contributions of the film thickness, grain size, and texture to the strength of aluminum thin films are estimated using an empirical strengthening model. The result indicates that the high strength of aluminum thin films is due largely to their small grain size, followed by the strengthening due to the film thickness and texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Kuan and M. Murakami, Metall. Trans. 13A, 383 (1982).

    CAS  Google Scholar 

  2. W.D. Nix, Metall. Trans. 20A, 2217 (1989).

    CAS  Google Scholar 

  3. R. Venkatraman and J.C. Bravman, J. Mater. Res. 7, 2040 (1992).

    CAS  Google Scholar 

  4. G.T. Mearini and R.W. Hoffman, J. Electron. Mater. 22, 623 (1993).

    CAS  Google Scholar 

  5. Metals Handbook 1, 8th ed. (Metals Park, OH: American Society for Metals, 1961), p. 1197.

  6. D.B. Knorr, Mater. Res. Soc. Symp. Proc. 309, (Pittsburgh, PA: Mater. Res. Soc, 1993), p. 75.

    Google Scholar 

  7. L.G. Schultz, J. Appl. Phys. 20, 1030 (1949).

    Article  Google Scholar 

  8. Standard Test Method for Preparing Quantitative Pole Figures, ASTM Standard E81-90 (Philadelphia: American Society for Testing and Materials, 1990).

  9. P.B. Hirsch, J. Inst. Metals 87, 406 (1958-1959).

    Google Scholar 

  10. C.V. Thompson, Mater. Res. Soc. Symp. Proc. 343, (Pittsburgh, PA: Mater. Res. Soc, 1994), p. 3

    Google Scholar 

  11. W.W. Mullins, Acta Metall. 6, 414 (1958).

    Article  Google Scholar 

  12. L. Tang and G. Thomas, J. Appl. Phys. 74, 5025 (1993).

    Article  CAS  Google Scholar 

  13. J.E. Schez, Jr. and E. Arzt, Scripta Metall. Mater. 26,1325 (1992).

    Article  Google Scholar 

  14. S.L. Duan, J.O. Artman, B. Wong and D.E. Laughlin , J. Appl. Phys. 67 (1990).

  15. J.W. Bartha, P.O. Hahn, F. LeGoues and P.S. Ho, J. Vac. Sci. Technol. A 3, 1390(1985).

    Article  CAS  Google Scholar 

  16. R.W. Hoffman.Mater.Res. Soc. Symp. Proc. 130, (Pittsburgh, PA: Mater. Res. Soc, 1989), p. 295.

    Google Scholar 

  17. R.Z. Valiev, Nanophase Materials: Synthesis-Properties-Ap- plications,eds. G.C. Hadjipanayis andR.W. Siegel, (Dordrecht: Kluwer, 1994), p. 275.

    Google Scholar 

  18. R.W. Siegel and G.E. Fougere, Mater. Res. Soc. Symp. Proc. 362, (Pittsburgh, PA: Mater. Res. Soc, 1995), p. 219.

    Google Scholar 

  19. M. Ke, S.A. Hackney, W.W. Milligan and E.C. Aifantis, Nanostruct. Mater. 5, 689 (1995).

    Article  CAS  Google Scholar 

  20. M.F. Ashby and R. Verall, Acta. Metall. 21, 149 (1973).

    Article  CAS  Google Scholar 

  21. P. Chaudhari, Phil. Mag. 39, 507 (1979).

    Article  CAS  Google Scholar 

  22. C.V. Thompson, J. Mater. Res. 8, 237 (1993).

    Google Scholar 

  23. A.H. Chokshi, A. Rosen, J. Karch and H. Gleiter, Scripta Metall. 23, 1679(1987).

    Google Scholar 

  24. G.W. Nieman, J.R. Weertman and R.W. Siegel, Scripta Metall. Mater. 24, 145 (1990).

    Article  CAS  Google Scholar 

  25. N. Hansen, Acta Metall. 25, 863 (1977).

    Article  CAS  Google Scholar 

  26. G.I. Taylor, J. Inst. Metals 62, 307 (1938).

    Google Scholar 

  27. J.F.W. Bishop and R. Hill, Phil. Mag. 42, 414 (1951).

    CAS  Google Scholar 

  28. J.F.W. Bishop and R. Hill, Phil. Mag. 42, 1298 (1951).

    CAS  Google Scholar 

  29. J.F.W. Bishop , Phil. Mag. 44 (1953).

  30. G.Y. Chin and W.L. Mammel, Trans. Metall. Soc. AIME 239, 1400 (1967).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, YS., Ho, P.S. Thickness dependent mechanical behavior of submicron aluminum films. J. Electron. Mater. 26, 805–813 (1997). https://doi.org/10.1007/s11664-997-0255-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0255-9

Key words

Navigation