Skip to main content
Log in

Electron cyclotron resonance plasma etching of materials for magneto-resistive random access memory applications

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Dry etching of multilayer magnetic thin film materials is necessary for the development of sensitive magnetic field sensors and memory devices. The use of high ion density electron cyclotron resonance (ECR) plasma etching for NiFe, NiFeCo, TaN, and CrSi in SF6/Ar, CH4/H2/Ar, and Cl2/Ar plasmas was investigated as a function of microwave source power, rf chuck power, and process pressure. All of the plasma chemistries are found to provide some enhancement in etch rates relative to pure Ar ion milling, while Cl2/Ar provided the fastest etch rate for all four materials. Typical etch rates of 3000Å/min were found at high microwave source power. Etch rates of these metals were found to increase with rf chuck power and microwave source power, but to decrease with increasing pressure in SF6/Ar, CH4/H2/Ar, and Cl2/Ar. A significant issue with Cl2/Ar is that it produces significant metal-chlorine surface residues that lead to post-etch corrosion problems in NiFe and NiFeCo. However, the concentration of these residues may be significantly reduced by in-situ H2 or O2 plasma cleaning prior to removal of the samples from the etch reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Tsang, M. Chen, T. Yogi and K. Ju, IEEE Trans. Magn. 30, 281 (1994).

    Article  Google Scholar 

  2. S. Wang, F. Liu, K.D. Maranowski and M.H. Kryder, IEEE Trans. Magn. 26, 1689 (1989).

    Google Scholar 

  3. See for example G.A. Prinz, Ultra-Thin Magnetic Structures II, ed. B. Heinrich and J.A.C. Bland (Berlin: Springer-Verlag, 1994).

    Google Scholar 

  4. M.J. Vasile and C.J. Mogab, J. Vac. Sci. Technol. A 4, 1841 (1986).

    Article  CAS  Google Scholar 

  5. F.C.M.J. van Delft, J. Magn. Mag. Mater. 140, 2203 (1995).

    Article  Google Scholar 

  6. B. Gorowitz, R.J. Saia and E.W. Balch, VLSI Electronics Microstructural Science, ed. N.G. Einspruch, S.S. Cohen and G. Gildenblat, Vol. 15 (Orlando, FL: Academic Press, 1987), Chap. 4.

    Google Scholar 

  7. A.K. Sinha, H.S. Lindenburger, D.B. Fraser, S.P. Murarka and E.N. Fuls, IEEE Trans. Electron Dev. ED-27, 1425 (1980).

    Google Scholar 

  8. D.W. Hess, Plasma Chem. Plasma Proc. 2, 141 (1982).

    Article  CAS  Google Scholar 

  9. T.M. Mayer, J.M.E. Harper and J.J. Cuomo, J. Vac. Sci. Technol. A 3, 1779 (1985).

    Article  CAS  Google Scholar 

  10. J.M.E. Harper, Plasma Etching-An Introduction, ed. D.M. Manos and D.L. Flamm (San Diego, CA: Academic Press, 1989), Chap. 6.

    Google Scholar 

  11. K. Kinoshita, IEEE Trans. Magn. 27, 4888 (1991).

    Article  CAS  Google Scholar 

  12. J.W. Lee, S.J. Pearton, C J. Santana, J.R. Mileham, E.S. Lambers, C.R. Abernathy, F. Ren and W.S. Hobson, J. Electrochem. Soc. 143, 1093 (1996).

    Article  CAS  Google Scholar 

  13. CRC Handbook of Chemistry and Physics, 72nd Ed. (Boca Raton, FL: CRC Press, 1989).

  14. M.A. Liebermann and A.J. Lichtenburg, Principles of Plasma Discharges and Materials Processing (New York: John Wiley and Sons, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, K.B., Lee, J.W., Park, Y.D. et al. Electron cyclotron resonance plasma etching of materials for magneto-resistive random access memory applications. J. Electron. Mater. 26, 1310–1313 (1997). https://doi.org/10.1007/s11664-997-0076-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-997-0076-x

Key words

Navigation