Skip to main content

Advertisement

Log in

Conventional and Metal Oxide-Based Inverted Polymer Solar Cells: A Comparative Experimental Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

P3HT/PCBM-based polymer solar cells (PSCs) were fabricated using conventional and inverted device architectures. Conventional PSCs were annealed at various temperatures ranging from room temperature (RT) to 180°C. At 130°C, the PSC exhibited enhanced device performance with efficiency of 2.64%. PSCs with oxide (TiO2/ZnO) interlayers were found to play an effective role in enhancing the photovoltaic (PV) properties of the cells, providing an energy step that efficiently contributes to the extraction and transport of electrons. The power conversion efficiency (PCE) of the as-prepared oxide (TiO2/ZnO)-based inverted PSCs was 3.16% and 2.32%, respectively, compared with efficiency of 0.77% for the reference device. The difference in efficiency followed a trend similar to that reported in our previous study. The photovoltaic (PV) properties of inverted PSCs were also tested at various annealing temperatures ranging from RT to 110°C. Interestingly, TiO2-based PSCs exhibited higher performance than ZnO-based inverted devices, suggesting that the interfacial electron transfer and recombination rates were effectively tuned because of the presence of TiO2 between the working electrode and the device’s active layer (AL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Kan, H. Feng, H. Yao, M. Chang, X. Wan, C. Li, J. Hou, and Y. Chen, A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss. Sci. China Chem. 61, 1307 (2018).

    Article  CAS  Google Scholar 

  2. H. Zhang, H. Yao, J. Hou, J. Zhu, J. Zhang, W. Li, R. Yu, B. Gao, S. Zhang, and J. Hou, Over 14% efficiency in organic solar cells enabled by chlorinated non fullerene small-molecule acceptors. Adv. Mater. 30, 1800613 (2018).

    Article  Google Scholar 

  3. Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, and K. Sun, 18% Efficiency organic solar cells. Sci. Bull. 65, 272 (2020).

    Article  CAS  Google Scholar 

  4. A. Classen, C. Chochos, L. Luer, V. Gregoriou, J. Wortmann, A. Osvet, K. Forberich, I. McCulloch, T. Heumuller, and C. Brabec, The role of excitons lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nat. Energy 5, 711 (2020).

    Article  CAS  Google Scholar 

  5. M. Ali, M. Abbas, S.K. Shah, E. Bontempi, A. DiCicco, and R. Gunnella, Film forming properties of electrosprayed organic Heterojunctions. Eur. Phys. J. Appl. Phys. 62, 30202 (2013).

    Article  Google Scholar 

  6. R. Kroon, M. Lenes, J.C. Hummelen, P.W. Blom, and B.J. De Boer, Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym. Rev. 63, 531 (2008).

    Article  Google Scholar 

  7. N. Gasparini, L. Lucera, M. Salvador, M. Prosa, G.D. Spyropoulos, P. Kubis, H.J. Egelhaaf, C.J. Brabec, and T. Ameri, High performance ternary organic solar cells with thick active layer exceeding 11% efficiency. Energy Environ. Sci. 10, 885 (2017).

    Article  CAS  Google Scholar 

  8. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23, 805 (2015).

    Article  Google Scholar 

  9. H. Zhou, Y. Zhang, C.K. Mai, S.D. Collins, G.C. Bazan, T.Q. Nguyen, and A.J. Heeger, Polymer homo-tandem solar cells with best efficiency of 11.3%. Adv. Mater. 27, 1767 (2015).

    Article  CAS  Google Scholar 

  10. L. Huo, T. Liu, X. Sun, Y. Cai, A.J. Heeger, and Y. Sun, Single junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv. Mater. 27, 2938 (2015).

    Article  CAS  Google Scholar 

  11. H. Choi, S. Ko, T. Kim, P. Morin, B. Walker, B.H. Lee, M. Leclerc, J.Y. Kim, and A.J. Heeger, Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor. Adv. Mater. 27, 3318 (2015).

    Article  CAS  Google Scholar 

  12. A.E. Shalan, W. Sharmoukh, A.N. Elshazly, M.M. Elnagar, S.A. Al Kiey, M.M. Rashad, and N.K. Allam, Dopant-free hole-transporting polymers for efficient, stable, and hysteresis-less perovskite solar cells. Sustain. Mater. Technol. 26, e00226 (2020).

    CAS  Google Scholar 

  13. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, and C.L. Brabec, Design rules for donors in bulk heterojunction solar cells towards 10% energy conversion Efficiency. Adv. Mater. 18, 789 (2006).

    Article  CAS  Google Scholar 

  14. S.K. Shah, Fabrication of bulk heterojunction organic solar cells with different configurations using electrospray. Nano. Express. 1, 020037 (2020).

    Article  Google Scholar 

  15. S.K. Shah, J. Khan, I. Ullah, and Y. Khan, Optimization of active layer thickness, top electrode and annealing temperature for polymeric solar cells. AIMS Mater. Sci. 4, 789 (2017).

    Article  Google Scholar 

  16. M. Reyes-Reyes, K. Kim, and D.L. Carroll, High-efficiency photovoltaic devices based on annealed poly (3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6) C 61 blends. Appl. Phys. Lett. 87, 083506 (2005).

    Article  Google Scholar 

  17. S.K. Shah, and R. Gunnella, Efficient method of fabricating polymeric solar cells in multilayered configuration using electrospray. Elect. Mater. 49, 1794 (2020).

    Article  CAS  Google Scholar 

  18. I. Ullah, S.K. Shah, S. Wali, S.A. Khattak, and K. Hayat, Enhanced efficiency of organic solar cells by using ZnO as an electron transport layer. Mater. Res. Express 4, 125505 (2017).

    Article  Google Scholar 

  19. S.K. Shah, K. Hayat, and K. Ali, Effect of TiO2 interlayer on the performance of inverted polymeric solar cells. Mater. Res. Express 6, 065102 (2019).

    Article  CAS  Google Scholar 

  20. S.K. Shah, M. Abbas, M. Ali, L. Hirsch, and R. Gunnella, Optimal construction parameters of electrosprayed trilayer organic photovoltaic devices. J. Phys. D: Appl. Phys. 47, 045106 (2014).

    Article  CAS  Google Scholar 

  21. S.K. Shah, R. Gunnella, L. Hirsch, and M. Abbas, Stability enhancement of polymer solar cells in trilayer configuration. Thin Solid Films 640, 104 (2017).

    Article  CAS  Google Scholar 

  22. Y. Sahin, S. Alem, R. de Bettignies, and J.M. Nunzi, Development of air stable polymer solar cells using an inverted gold on top anode structure. Thin Solid Films 476, 340 (2005).

    Article  CAS  Google Scholar 

  23. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S.A. Choulis, and C.J. Brabec, Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl. Phys. Lett. 89, 233517 (2006).

    Article  Google Scholar 

  24. M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, and D.S. Ginley, Inverted bulk- heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006).

    Article  Google Scholar 

  25. G. Li, C.-W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Efficient inverted polymer solar cells. Appl. Phys. Lett. 88, 253503 (2006).

    Article  Google Scholar 

  26. C.-Y. Chou, J.-S. Huang, C.-H. Wu, C.-Y. Lee, and C.-F. Lin, lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells Sol. Energy Mater. Sol. Cells 93, 1608 (2009).

    Article  CAS  Google Scholar 

  27. S.R. Gollu, R. Sharma, G. Srinivas, S. Kundu, and G. Gupta, Incorporation of silver and gold nanostructures for performance improvement in P3HT: PCBM inverted solar cell with rGO/ZnO nanocomposite as an electron transport layer. Org. Electron. 29, 79 (2016).

    Article  CAS  Google Scholar 

  28. W. Greenbank, L. Hirsch, G. Wantz, and S. Chambon, Interfacial thermal degradation in inverted organic solar cells. Appl. Phys. Lett. 107, 263301 (2015).

    Article  Google Scholar 

  29. S. Chambon, L. Derue, M. Lahaye, B. Pavageau, L. Hirsch, and G. Wantz, MoO3 thickness, thermal annealing and solvent annealing effects on inverted and direct polymer photovoltaic solar cells. Mater. 5, 2521 (2012).

    Article  CAS  Google Scholar 

  30. K. Bibi, I. Ahmad, K. Hayat, M. Ali, and S.K. Shah, Simulation and experimental device performance analysis of TiO2 based inverted organic solar cells. Elect. Mater. 51, 5181 (2022).

    Article  CAS  Google Scholar 

  31. A. Hussein, A simple approach to extract the unknown parameters of PV modules. Turk. J. Electr. Eng. Comp. Sci. 25, 4431 (2017).

    Article  Google Scholar 

  32. W. De Soto, S.A. Klein, and W.A. Beckman, Improvement and validation of a model for photovoltaic array performance. Solar. Energy Sol. Energy 80, 78 (2006).

    Article  Google Scholar 

  33. D. Rusirawan and I. Farkas, Identification of model parameters of the photovoltaic solar cells. Energy Procedia. 57, 39 (2014).

    Article  Google Scholar 

  34. A. Jain and A. Kapoor, Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Sol. Energy Mater. Sol. Cells 81, 269 (2004).

    Article  CAS  Google Scholar 

  35. M. Shaban, M. Benghanem, A. Almohammedi, and M. Rabia, Optimization of the active layer P3HT:PCBM for organic solar cell. Coatings 11, 863 (2021).

    Article  CAS  Google Scholar 

  36. C.J. Brabec and J.R. Durrant, Solution processed organic solar cells. MRS Bull. 33, 670 (2008).

    Article  CAS  Google Scholar 

  37. B. Kadem, A. Hassan, and W. Cranton, Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J. Mater. Sci. Mater. Electron. 27, 7038 (2016).

    Article  CAS  Google Scholar 

  38. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J. Appl. Phys. 98, 043704 (2005).

    Article  Google Scholar 

  39. B. Qia and J. Wang, Open-circuit voltage in organic solar cells. J. Mater. Chem. 22, 24315 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support extended by the Higher Education Commission (HEC), Islamabad, via the National Research Program for Universities (NRPU-10603, 2017), Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Karim Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.K., Ahmad, I., Shah, J. et al. Conventional and Metal Oxide-Based Inverted Polymer Solar Cells: A Comparative Experimental Study. J. Electron. Mater. 52, 1400–1409 (2023). https://doi.org/10.1007/s11664-022-10103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10103-0

Keywords

Navigation