Skip to main content

Advertisement

Log in

Experimental and Field Study of a Pavement Thermoelectric Energy Harvesting System Based on the Seebeck Effect

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Methods for harnessing clean energy have received considerable attention recently. In this study, a thermoelectric power generation device is developed for use in road engineering. The thermoelectric generator unit (TEGU) is systematically studied under the influence of various factors including varied temperature differences, load resistance, burial depth, and pavement defects. The experimental results indicate that the output voltage of the TEGU is consistent with the Seebeck effect. When the temperature difference is 60°C, the output power is 24.85 times the power generated when the temperature difference is 10°C. In addition, the deeper the burial depth of the TEGU, the lower the output voltage, and the higher the temperature difference at the same burial depth, the higher the output voltage. In the field test, the TEGU was buried 2 cm below the ground surface. When the maximum temperature difference reached 25.5°C, the open-circuit voltage was 21.41 V and the short-circuit current was 97.2 mA. When the optimal impedance matching resistance was 50 Ω, the output power reached a peak of 0.623 W, and the output voltage was 5.582 V. Furthermore, no significant changes in the power generation ability of the TEGU were observed with different degrees of asphalt pavement defects. The output voltage under typical road conditions when the temperature difference in the laboratory was 30°C only reached 55.49% of that when the temperature difference in the field test was 25.5°C. The developed system enables the conversion of the road surface heat energy and reduction of the internal temperature of the road surface, which can facilitate the development and application of thermoelectric technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Tota-Maharaj and P. Paul, Sustainable Approaches for Stormwater Quality Improvements with Experimental Geothermal Paving Systems. Sustainability 7, 1388 (2015).

    Article  Google Scholar 

  2. U. Datta, S. Dessouky, and A.T. Papagiannakis, Harvesting Thermoelectric Energy from Asphalt Pavements. Transp. Res. Rec. 2628, 12 (2017).

    Article  Google Scholar 

  3. J. Wang, Z. Liu, G. Ding, H. Fu, and G. Cai, Watt-Level Road-Compatible Piezoelectric Energy Harvester for LED-Induced Lamp System. Energy 229, 120685 (2021).

    Article  Google Scholar 

  4. J. Wang, X. Qin, Z. Liu, G. Ding, and G. Cai, Experimental Study on Fatigue Degradation of Piezoelectric Energy Harvesters under Equivalent Traffic Load Conditions. Int. J. Fatigue. 150, 106320 (2021).

    Article  CAS  Google Scholar 

  5. J. Wang, Z. Liu, K. Shi, and G. Ding, Development and Application Performance of Road Spring-Type Piezoelectric Transducer for Energy Harvesting. Smart Mater. Struct. 30, 085020 (2021).

    Article  CAS  Google Scholar 

  6. J. Wang, X. Qin, Z. Liu, K. Shi, G. Ding, X. Li, and G. Cai, Experimental Field Study on a Full-Scale Road Piezoelectric Energy Harvester. Smart Mater. Struct. 31, 055003 (2022).

    Article  Google Scholar 

  7. E. Sazonov, H. Li, D. Curry, and P. Pillay, Self-Powered Sensors for Monitoring of Highway Bridges. IEEE Sens. J. 9, 1422 (2009).

    Article  Google Scholar 

  8. H. Wang, A. Jasim, and X. Chen, Energy Harvesting Technologies in Roadway and Bridge for Different Applications-A Comprehensive Review. Appl. Energy. 212, 1083 (2018).

    Article  Google Scholar 

  9. A. Bahaj, Solar photovoltaic energy: generation in the built environment. Proceedings of the Institution of Civil Engineers-Civil Engineering. 158, 45 (2005).

  10. Z. Zhou, X. Wang, X. Zhang, G. Chen, J. Zuo, and S. Pullen, Effectiveness of Pavement-Solar Energy System - An Experimental Study. Appl. Energy. 138, 1 (2015).

    Article  Google Scholar 

  11. J. Wang, F. Xiao, and H. Zhao, Thermoelectric, Piezoelectric and Photovoltaic Harvesting Technologies for Pavement Engineering. Renew. Sustain. Energy Rev. 151, 111522 (2021).

    Article  Google Scholar 

  12. B. Xiang, X. Cao, Y. Yuan, M. Hasanuzzaman, C. Zeng, Y. Ji, and L. Sun, A Novel Hybrid Energy System Combined with Solar-Road and Soil-Regenerator: Sensitivity Analysis and Optimization. Renew. Energy 129, 419 (2018).

    Article  Google Scholar 

  13. C. Pascual, J. de Castro, A. Kostro, A. Schueler, A.P. Vassilopoulos, and T. Keller, Diffuse Light Transmittance of Glass Fiber-Reinforced Polymer Laminates for Multifunctional Load-Bearing Structures. J. Compos. Mater. 48, 3621 (2014).

    Article  Google Scholar 

  14. S. Ahmad, M.A. Mujeebu, and M.A. Farooqi, Energy Harvesting from Pavements and Roadways: A Comprehensive Review of Technologies, Materials, and Challenges. Int. J. Energy Res. 43, 1974 (2019).

    Article  CAS  Google Scholar 

  15. J. Heo, H. Moon, S. Chang, S. Han, and D.E. Lee, Case Study of Solar Photovoltaic Power-Plant Site Selection for Infrastructure Planning Using a BIM-GIS-Based Approach. Appl. Sci. 11, 8785 (2021).

    Article  CAS  Google Scholar 

  16. S. Kim, Y. Lee, and H.R. Moon, Siting Criteria and Feasibility Analysis for PV Power Generation Projects Using road Facilities. Renew. Sustain. Energy Rev. 81, 3061 (2018).

    Article  Google Scholar 

  17. Q. Xue, L. Liu, Y. Zhao, Y.J. Chen, and J.S. Li, Dynamic behavior of Asphalt Pavement Structure under Temperature-Stress Coupled Loading. Appl. Therm. Eng. 53, 1 (2013).

    Article  Google Scholar 

  18. W. Herb, R. Velasquez, H. Stefan, M.O. Marasteanu, and T. Clyne, Simulation and Characterization of Asphalt Pavement Temperatures. Road Mater. Pavement Des. 10, 233 (2009).

    Google Scholar 

  19. A. Mohajerani, J. Bakaric, and T. Jeffrey-Bailey, The Urban Heat Island Effect, its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 197, 522 (2017).

    Article  Google Scholar 

  20. J.A. Villena Del Carpio, D.L. Marinoski, G. Triches, R. Lamberts, and J.V. Staub de Melo, Urban pavements used in Brazil: Characterization of solar reflectance and temperature verification in the field. Sol. Energy. 134, 72 (2016).

    Article  Google Scholar 

  21. A. Moser, M. Erd, M. Kostic, K. Cobry, M. Kroener, L.M. Reindl, and P. Woias, Thermoelectric Energy Harvesting from Transient Ambient Temperature Gradients. J. Electron. Mater. 41, 1653 (2012).

    Article  CAS  Google Scholar 

  22. G. Wu and X. Yu, System design to harvest thermal energy across pavement structure. in IEEE Energytech. (2012), p.1–4

  23. J. Kim, S.T. Lee, S. Yang and J. Lee, Implementation of Thermal-Energy-Harvesting Technology on Pavement. J. Test. Eval. 45, 582 (2017).

    Article  CAS  Google Scholar 

  24. S.A. Whalen, and R.C. Dykhuizen, Thermoelectric Energy Harvesting from Diurnal Heat Flow in the Upper Soil Layer. Energy Convers. Manag. 64, 397 (2012).

    Article  CAS  Google Scholar 

  25. W. Jiang, J. Xiao, D. Yuan, H. Lu, S. Xu, and Y. Huang, Design and Experiment of Thermoelectric Asphalt Pavements with Power-Generation and Temperature-Reduction Functions. Energy Build. 169, 39 (2018).

    Article  Google Scholar 

  26. S.A. Tahami, M. Gholikhani, R. Nasouri, S. Dessouky, and A.T. Papagiannakis, Developing a New Thermoelectric Approach for Energy Harvesting from Asphalt Pavements. Appl. Energy. 238, 786 (2019).

    Article  Google Scholar 

  27. T. Sakamoto, T. Iida, T. Sekiguchi, Y. Taguchi, N. Hirayama, K. Nishio, and Y. Takanashi, Selection and Evaluation of Thermal Interface Materials for Reduction of the Thermal Contact Resistance of Thermoelectric Generators. J. Electron. Mater. 43, 3792 (2014).

    Article  CAS  Google Scholar 

  28. K. Karthick, G.C. Joy, S. Suresh, and R. Dhanuskodi, Impact of Thermal Interface Materials for Thermoelectric Generator Systems. J. Electron. Mater. 47, 5763 (2018).

    Article  CAS  Google Scholar 

  29. W. Zhou, K. Yamamoto, A. Miura, R. Iguchi, Y. Miura, K.-I. Uchida, and Y. Sakuraba, Seebeck-Driven Transverse Thermoelectric Generation. Nat. Mater. 20, 463 (2021).

    Article  CAS  Google Scholar 

  30. L.E. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  31. Z.Z. He, A Coupled Electrical-Thermal Impedance Matching Model for Design Optimization of Thermoelectric Generator. Appl. Energy. 269, 115037 (2020).

    Article  Google Scholar 

  32. K. Zhu, Z. Liu, and Z. Wang, Experimental Study on SP1848 Thermoelectric Power Generation Sheet. Univ. Phy. Experiment. 34, 13 (2021).

    Google Scholar 

  33. A.A. Angeline, J. Jayakumar, L.G. Asirvatham, J.J. Marshal, and S. Wongwises, Power Generation Enhancement with Hybrid Thermoelectric Generator Using Biomass Waste Heat Energy. Exp. Therm. Fluid Sci. 85, 1 (2017).

    Article  CAS  Google Scholar 

  34. W. Chen, C.Y. Liao, C.I. Hung, and W.L. Huang, Experimental Study on Thermoelectric Modules for Power Generation at Various Operating Conditions. Energy 45, 874 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiran Hou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Shi, K., Song, L. et al. Experimental and Field Study of a Pavement Thermoelectric Energy Harvesting System Based on the Seebeck Effect. J. Electron. Mater. 52, 209–218 (2023). https://doi.org/10.1007/s11664-022-09967-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09967-z

Keywords

Navigation