Skip to main content
Log in

Effect of Humidity on the Sensitivity of an Ion-Doped TiO2 Nanotube-Based Gas Sensor to H2S and Its Mechanism via Density Functional Theory

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We analyzed the effects of humidity on the H2S sensing ability of the undoped, Zn-doped, and Fe-doped TiO2 nanotube (TiNT)-based gas sensors. The 0.1 M Zn-doped TiNT-based gas sensor had more stable responses to 50 ppm H2S at 300°C compared to the undoped TiNT when the relative humidity (RH) ranged from 3 to 85%RH. For the 0.1 M Fe-doped TiNT sensor, the response reached the highest value (34.19-50 ppm H2S) at 70%RH. The Fe-doped TiNT sensors maintained relatively high responses when the relative humidity was below 60%RH. To determine the relationship between the sensing mechanism and TiO2 band structures and to determine the effect of water on the sensing mechanism, the systematic density functional theory (DFT) calculations for adsorption modes were performed. We found that metal ion doping was effective in improving the performance of H2S TiNT film-based gas sensors under different relative humidities. We also demonstrated the value of metal-doped TiNT gas sensors in practical environments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Nazemi, A. Joseph, J. Park, and A. Emadi, Advanced Micro–and Nano-Gas Sensor Technology: A Review. Sensors 19, 1285 (2019).

    Article  CAS  Google Scholar 

  2. J. Tan, and J. Xu, Applications of Electronic Nose (e-Nose) and Electronic Tongue (e-Tongue) in Food Quality-Related Properties Determination: A Review. Artif. Intell. Agr. 4, 104–115 (2020).

    Google Scholar 

  3. C. Baldini, L. Billeci, F. Sansone, R. Conte, C. Domenici, and A. Tonacci, Electronic Nose as a Novel Method for Diagnosing Cancer: a Systematic Review. Biosensors 10, 84 (2020).

    Article  CAS  Google Scholar 

  4. A. Mirzaei, S.S. Kim, and H.W. Kim, Resistance-Based H2S Gas Sensors Using Metal Oxide Nanostructures: A Review of Recent Advances. J. Hazard. Mater. 357, 314 (2018).

    Article  CAS  Google Scholar 

  5. X. Hu, Q. Chi, Q. Liu, D. Wang, Y. Zhang, and S. Li, ATMOSPHERIC H2S Triggers Immune Damage by Activating the TLR-7/MyD88/NF-kB Pathway and NLRP3 Inflammasome in Broiler Thymus. Chemosphere 237, 124427 (2019).

    Article  CAS  Google Scholar 

  6. Q. Chi, X. Hu, B. Zhao, Q. Zhang, K. Zhang, and S. Li, Regulation of H2S-Induced Necroptosis and Inflammation in Broiler Bursa of Fabricius by the miR-15b-5p/TGFBR3 Axis and the Involvement of Oxidative Stress in this Process. J. Hazard. Mater. 406, 124682 (2021).

    Article  CAS  Google Scholar 

  7. V.V. Krivetskiy, M.D. Andreev, A.O. Efitorov, and M. Gaskov, Alexander, Statistical Shape Analysis Pre-Processing of Temperature Modulated Metal Oxide Gas Sensor Response for Machine Learning Improved Selectivity of Gases Detection in Real Atmospheric Conditions. Sensor. Actuat. B-Chem. 329, 129187 (2021).

    Article  CAS  Google Scholar 

  8. S. Ganguly, R. Jha, K.P. Guha, and C. Jacob, Synthesis of CuO Nanoflowers and their Application Towards Inflammable Gas Sensing. J. Electron. Mater. 49, 5070 (2020).

    Article  CAS  Google Scholar 

  9. M. Jang, J. Lee, S.Y. Park, J. Lee, K.M. Lee, W. Song, S. Myung, S.S. Lee, H.K. Jung, Y.C. Kang, S.K. Kwak, and K.S. An, Rational Surface modificaTion of ZnO with Siloxane Polymers for Room-Temperature-Operated thin-film Transistor-Based Gas Sensors. Appl. Surf. Sci. 542, 148704 (2021).

    Article  CAS  Google Scholar 

  10. J.M. Rzaij, and A.M. Abass, Review on: TiO2 thin Film as a Metal Oxide Gas Sensor. J. Chem. Rev. 2, 114 (2020).

    Article  CAS  Google Scholar 

  11. J.M. Smulko, M. Trawka, C.G. Granqvist, R. Ionescu, F. Annanouch, E. Llobet, and L.B. Kish, New Approaches for Improving Selectivity and Sensitivity of Resistive Gas Sensors: A Review. Sensor Rev. 35, 340 (2015).

    Article  Google Scholar 

  12. E.A.N. Simonetti, T.C. de Oliveira, Á.E. de Carmo-Machado, A.A.C. Silva, A.S. dos Santos, and L. de Simone-Cividanes, TiO2 as a Gas Sensor: The Novel Carbon Structures and Noble Metals as New Elements for Enhancing Sensitivity-A Review. Ceram. Int. 47, 17844 (2021).

    Article  CAS  Google Scholar 

  13. Y. Zhang, W. Zeng, and Y. Li, Computational Study of Surface Orientation Effect of Rutile TiO2 on H2S and CO Sensing Mechanism. Appl. Surf. Sci. 495, 143619 (2019).

    Article  CAS  Google Scholar 

  14. M. Shooshtari, and A. Salehi, Ammonia Room-Temperature Gas Sensor Using Different TiO2 Nanostructures. J. Mater. Sci. Mater. El. 32, 17371 (2021).

    Article  CAS  Google Scholar 

  15. Z.P. Tshabalala, H.C. Swart, and D.E. Motaung, Fabrication of TiO2 nanofibers Based Sensors for Enhanced CH4 Performance Induced by Notable Surface Area and Acid Treatment. Vacuum 187, 110102 (2021).

    Article  CAS  Google Scholar 

  16. Q. Jin, W. Wen, S. Zheng, R. Jiang, and J.M. Wu, Branching TiO2 Nanowire Arrays for Enhanced Ethanol Sensing. Nanotechnology 32, 295501 (2021).

    Article  CAS  Google Scholar 

  17. Z. Bai, C. Xie, M. Hu, S. Zhang, and D. Zeng, Effect of Humidity on the Gas Sensing Property of the Tetrapod-Shaped ZnO Nanopowder Sensor. Mat. Sci. Eng. B 149, 12 (2008).

    Article  CAS  Google Scholar 

  18. M. Shooshtari, A. Salehi, and S. Vollebregt, Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature. IEEE Sens. J. 21, 5763 (2020).

    Article  Google Scholar 

  19. O. Krško, T. Plecenik, T. Roch, B. Grančič, L. Satrapinskyy, M. Truchlý, P. Ďurina, M. Gregor, P. Kúš, and A. Plecenik, Flexible Highly Sensitive Hydrogen Gas Sensor Based on a TiO2 thin Film on Polyimide Foil. Sens. Actuat. B-Chem. 240, 1058 (2017).

    Article  CAS  Google Scholar 

  20. M. Shooshtari, A. Salehi, and S. Vollebregt, Effect of Temperature and Humidity on the Sensing Performance of TiO2 Nanowire-Based Ethanol Vapor Sensors. Nanotechnology 32, 325501 (2021).

    Article  CAS  Google Scholar 

  21. M. Hübner, C.E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Bârsan, and U. Weimar, Influence of Humidity on CO Sensing with p-type CuO Thick Film Gas Sensors. Sensor. Actuat. B-Chem. 153, 347 (2011).

    Article  CAS  Google Scholar 

  22. T. Liu, R. Yang, G. Zhang, W. Wu, Z. Yang, R. Lin, X. Wang, and Y. Jiang, Mechanism of Selective Catalytic Reduction of NOx with NH3 over CeO2-TiO2: Insight from in-situ DRIFTS and DFT Calculations. Appl. Surf. Sci. 568, 150764 (2021).

    Article  CAS  Google Scholar 

  23. J.T. Mazumder, R. Mayengbam, and S.K. Tripathy, Theoretical Investigation on Structural, electronic, Optical and Elastic Properties of TiO2, SnO2, ZrO2 and HfO2 using SCAN meta-GGA Functional: A DFT Study. Mater. Chem. Phys. 254, 123474 (2020).

    Article  CAS  Google Scholar 

  24. X. Tong, W. Shen, X. Chen, and J.P. Corriou, A Fast Response and Recovery H2S Gas Sensor Based on free-Standing TiO2 Nanotube Array Films Prepared by One-Step Anodization Method. Ceram. Int. 43, 14200 (2017).

    Article  CAS  Google Scholar 

  25. U. Kumar, and B.C. Yadav, Development of Humidity Sensor Using Modified Curved MWCNT based thin Film with DFT Calculations. Sensor. Actuat. B-Chem. 288, 399 (2019).

    Article  CAS  Google Scholar 

  26. Q. Ibrahim, R. Akbarzadeh, and S. Gharbia, The Electronic Properties and Water Desalination Performance of a Photocatalytic TiO2/MoS2 Nanocomposites Bilayer Membrane: A Molecular Dynamic Simulation. J. Mol. Model. 28, 1 (2022).

    Article  CAS  Google Scholar 

  27. A. Hemeryck, A. Motta, C. Lacaze-Dufaure, D. Costa, and P. Marcus, DFT-D Study of Adsorption of Diaminoethane and Propylamine Molecules on anatase (101) TiO2 Surface. Appl. Surf. Sci. 426, 107 (2017).

    Article  CAS  Google Scholar 

  28. Y. Wang, Y. Gui, C. Ji, C. Tang, Q. Zhou, J. Li, and X. Zhang, Adsorption of SF6 Decomposition Components on Pt3-TiO2 (101) Surface: A DFT Study. Appl. Surf. Sci. 459, 242 (2018).

    Article  CAS  Google Scholar 

  29. Y. Chen, W. Li, J. Wang, Y. Gan, L. Liu, and M. Ju, Microwave-Assisted Ionic Liquid Synthesis of Ti3+ self-Doped TiO2 Hollow Nanocrystals with Enhanced Visible-Light Photoactivity. Appl. Catal. B-Environ. 191, 94 (2016).

    Article  CAS  Google Scholar 

  30. A. Farzaneh, M.D. Esrafli, and Ö. Mermer, Development of TiO2 Nanofibers Based Semiconducting Humidity Sensor: Adsorption Kinetics and DFT Computations. Mater. Chem. Phys. 239, 121981 (2020).

    Article  CAS  Google Scholar 

  31. M.J. Valero-Romero, J.G. Santaclara, L. Oar-Arteta, L. van Koppen, D.Y. Osadchii, J. Gascon, and F. Kapteijn, Photocatalytic Properties of TiO2 and Fe-Doped TiO2 Prepared by Metal Organic Framework-Mediated Synthesis. Chem. Eng. J. 360, 75 (2019).

    Article  CAS  Google Scholar 

  32. T. Dikici, O. Yılmaz, A. Akalın, S. Demirci, S. Gültekin, S. Yıldırım, and M. Yurddaşkal, Production of Zn-Doped TiO2 film with Enhanced Photocatalytic Activity. J. Aust. Ceram. Soc. 35, 1–7 (2022).

    Google Scholar 

  33. G. Ou, Y. Xu, B. Wen, R. Lin, B. Ge, Y. Tang, Y. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W. Chen, J. Li, H. Wu, L. Liu, and Y. Li, Tuning Defects in Oxides at Room Temperature by Lithium Reduction. Nat. Commun. 9, 1 (2018).

    Article  CAS  Google Scholar 

  34. W.K. Li, X.Q. Gong, G. Lu, and A. Selloni, Different Reactivities of TiO2 Polymorphs: Comparative DFT Calculations of Water and Formic acid Adsorption at Anatase and Brookite TiO2 Surfaces. J. Phys. Chem. C Lett. 112, 6594 (2008).

    Article  CAS  Google Scholar 

  35. N. Martsinovich, D.R. Jones, and A. Troisi, Electronic Structure of TiO2 Surfaces and Effect of Molecular Adsorbates Using Different DFT Implementations. J. Phys. Chem. C 114, 22659 (2010).

    Article  CAS  Google Scholar 

  36. H. Farrokhpour, M. Vazifeh, and A.N. Chermahini, Adsorption modes of 1,3-thiazol-2-amine on the TiO2 (001) and (101) Anatase Surfaces. Struct. Chem. 28, 1151 (2017).

    Article  CAS  Google Scholar 

  37. D. Gulevich, M. Rumyantseva, E. Gerasimov, N. Khmelevsky, E. Tsvetkova, and A. Gaskov, Synergy Effect of Au and SiO2 Modification on SnO2 Sensor Properties in VOCs Detection in Humid air. Nanomaterials 10, 813 (2020).

    Article  CAS  Google Scholar 

  38. D. Nagmani, A. Pravarthana, T.C. Tyagi, W. Jagadale, and D.K. Prellier, Aswal, Highly Sensitive and Selective H2S gas Sensor Based on TiO2 thin Films. Appl. Surf. Sci. 549, 149281 (2021).

    Article  CAS  Google Scholar 

  39. S. Huang, T. Wang, and Q. Xiao, Effect of Fe Doping on the Structural and Gas Sensing Properties of ZnO Porous Microspheres. J. Phys. Chem. Solids 76, 51 (2015).

    Article  CAS  Google Scholar 

  40. D. Zhu, T. Hu, Y. Zhao, W. Zang, L. Xing, and X. Xue, High-Performance Self-Powered/Active Humidity Sensing of Fe-Doped ZnO Nanoarray Nanogenerator. Sensor. Actuat. B-Chem. 213, 382 (2015).

    Article  CAS  Google Scholar 

  41. H. Yua, S. Gao, X. Cheng, P. Wang, X. Zhang, Y. Xu, H. Zhao, and L. Huo, Morphology Controllable Fe2O3 Nanostructures Derived from Fe-Based Metal-Organic Frameworks for Enhanced Humidity Sensing Performances. Sensor. Actuat. B-Chem. 297, 126744 (2019).

    Article  CAS  Google Scholar 

  42. A.S. Ismail, M.H. Mamat, I.B. Shameem Banu, R. Amiruddin, M.F. Malek, N. Parimon, A.S. Zoolfakar, N.DMd. Sin, A.B. Suriani, M.K. Ahmad, and M. Rusop, Structural Modification of ZnO Nanorod array Through Fe-doping: Ramification on UV and Humidity Sensing Properties. Nano-Struct. Nano-Objects 18, 100262 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the research funds of the Natural Science Foundation of Zhejiang Province (No. LQ20C160007), Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education of China (No. KF202023), Key Project of Science and Technology Plan of Zhejiang Province (No. 2019C03136), and National Natural Science Foundation of China (No. 21808209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Zhang, X., Wang, H. et al. Effect of Humidity on the Sensitivity of an Ion-Doped TiO2 Nanotube-Based Gas Sensor to H2S and Its Mechanism via Density Functional Theory. J. Electron. Mater. 51, 5440–5453 (2022). https://doi.org/10.1007/s11664-022-09785-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09785-3

Keywords

Navigation