Skip to main content
Log in

Cu-Doped and Un-Doped WO3 Photochromic Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, 0%, 0.5%, 1%, and 2% Cu-doped WO3 nanoparticles were synthesized via a polyol method. The as-synthesized materials were characterized by x-ray diffraction, scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), x-ray photoelectron spectroscopy (XPS), and UV-Vis photochromic activity. A bond valence model was adopted to explain the relationship between the lattice parameter and Cu percentage. Additionally, two films (1% Cu-doped and un-doped samples) obtained by dip-coating from a well-dispersed suspension were optically investigated using ex situ and in situ UV-Vis spectrometry; coloring/bleaching kinetics were thoroughly studied. The Cu-doped WO3 film was found to have a high-quality bleaching mechanism (five times as fas as the un-doped WO3 film). Finally, the high bleaching performance of the doped films was confirmed by successive cycling, showing that the as-prepared compounds are of great interest for smart window applications, for example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Cora, M. Stachiotti, C.R.A. Catlow, and C.O. Rodriguez, Transition metal oxide chemistry: electronic structure study of WO3, ReO3, and NaWO3. J. Phys. Chem. A 101, 3945 (1997).

    Article  CAS  Google Scholar 

  2. J. Wei, X. Jiao, T. Wang, and D. Chen, Electrospun photochromic hybrid membranes for flexible rewritable media. ACS Appl. Mater. Interfaces 8, 29713 (2016).

    Article  CAS  Google Scholar 

  3. R. Diehl, G. Brandt, and E. Salje, The crystal structure of triclinic WO3. Acta Crystallogr. A 34, 1105 (1978).

    Article  Google Scholar 

  4. Y.S. Zou, Y.C. Zhang, D. Lou, and H.P. Wang, Structural and optical properties of WO3 films deposited by pulsed laser deposition. J. Alloys Compd 583, 465 (2014).

    Article  CAS  Google Scholar 

  5. N. Li, Y. Zhao, Y. Wang, Y. Lu, Y. Song, Z. Huang, Y. Li, and J. Zhao, Aqueous synthesis and visible-light photochromism of metastable h-WO3 hierarchical nanostructures. Eur. J. Inorg. Chem. 2015 (17), 2804 (2015).

    Article  CAS  Google Scholar 

  6. C.S. Blackman, and I.P. Parkin, Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3-x thin films from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties. Chem. Mater. 17, 1583 (2005).

    Article  CAS  Google Scholar 

  7. S.K. Deb, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energy Mater. Sol. Cells 92, 245 (2008).

    Article  CAS  Google Scholar 

  8. C.O. Avellaneda, and L.O.S. Bulhones, Photochromic properties of WO3 and WO3: X (X=Ti, Nb, Ta and Zr) thin films. Solid State Ionics 165, 117 (2003).

    Article  CAS  Google Scholar 

  9. O. Oderinde, M. Kang, M. Kalulu, F. Yao, and G. Fu, Facile synthesis and study of the photochromic properties of deep eutectic solvent-templated cuboctahedral-WO3/MoO3 nanocomposites. Superlattices Microstruct. 125, 103 (2018).

    Article  Google Scholar 

  10. V. Hariharan, V. Aroulmoji, K. Prabakaran, B. Gnanavel, M. Parthibavarman, R. Sathyapriya, and M. Kanagaraj, Magnetic and electrochemical behaviour of cobalt doped tungsten oxide (WO3) nanomaterials by microwave irradiation method. J. Alloys Compd. 689, 41 (2016).

    Article  CAS  Google Scholar 

  11. X. Dong, Z. Wu, Y. Guo, Y. Tong, X. Liu, L. Zhang, and Y. Lu, Rational modification in the photochromic and self-bleaching performance of hierarchical microsphere Cu@h-WO3/WO3·nH2O composites. Solar Energy Mater. Solar Cells 219, 11078 (2021).

    Article  Google Scholar 

  12. Y. Shen, P. Yan, Y. Yang, F. Hu, Y. Xiao, L. Pan, and Z. Li, Hydrothermal synthesis and studies on photochromic properties of Al doped WO3 powder. J. Alloy. Compd. 629, 27 (2015).

    Article  CAS  Google Scholar 

  13. M. Sun, N. Xu, Y.W. Cao, J.N. Yao, and E.G. Wang, Preparation, microstructure and photochromism of a new nanocrystalline WO3 film. J. Mater. Sci. Lett. 19, 1407 (2000).

    Article  CAS  Google Scholar 

  14. D.J. Ham, A. Phuruangrat, S. Thongtem, and J.S. Lee, Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water. Chem. Eng. J. 165, 365 (2010).

    Article  CAS  Google Scholar 

  15. X. Sun, H. Cao, Z. Liu, and J. Li, Influence of annealing temperature on microstructure and optical properties of sol-gel derived tungsten oxide films. Appl. Surf. Sci. 255, 8629 (2009).

    Article  CAS  Google Scholar 

  16. H. Dong, Y. Chen, and C. Feldmann, Polyol synthesis of nanoparticles: status and options regarding metals oxides, chalcogenides, and non-metal elements. Green Chem. 17, 4107 (2015).

    Article  CAS  Google Scholar 

  17. M. Bourdin, M. Gaudon, F. Weill, M. Duttine, M. Gayot, Y. Messaddeq, and T. Cardinal, Nanoparticles (NPs) of WO3-x compounds by polyol route with enhanced photochromic properties. Nanomaterials 9, 1555 (2019).

    Article  CAS  Google Scholar 

  18. M. Bourdin, G. Salek, A. Fargues, S. Messaddeq, Y. Messaddeq, T. Cardinal, and M. Gaudon, Investigation on the coloring and bleaching processes of WO3−x photochromic thin films. J. Mater. Chem. C 8, 9410 (2020).

    Article  CAS  Google Scholar 

  19. R. Gross, and A. Marx, “Festkörper physic” 3rd Edition, Hubert & Co (Göttingen: GmbH & Co. KG, 2018).

    Google Scholar 

  20. J.B. Lee, H.J. Le, S.H. Seo, and J.S. Park, Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications. Thin Solid Films 398, 641 (2001).

    Article  Google Scholar 

  21. Z. Wang, X. Fan, D. Hana, and F. Gu, Structural and electronic engineering of 3DOM WO3 by alkali metal doping for improved NO2 sensing performance. Nanoscale 8, 10622 (2016).

    Article  CAS  Google Scholar 

  22. I.D. Brown, The chemical bond in inorganic chemistry (Oxford, U.K.: Oxford University Press, 2002).

    Google Scholar 

  23. A.R. West, Solid State Chemistry and its Applications, 2nd ed., (New York: John Wiley & Sons, 1991).

    Google Scholar 

  24. A. Goldstein, V. Chiriac, and D. Becherescu, On some d1 Ions Spectra in Oxide Glasses. J. Non-Cryst. Solids 92, 271 (1987).

    Article  CAS  Google Scholar 

  25. D. Möncke, J. Jiusti, L.D. Silva, and A.C.M. Rodrigues, Long-Term stability of laser-induced defects in (fluoride-)phosphate glasses doped with W Mo, Ta, Nb and Zr ions. J. Non-Crystalline Solids 498, 401 (2018).

    Article  Google Scholar 

  26. H.Y. Wong, C.W. Ong, R.W.M. Kwok, K.W. Wong, S.P. Wong, and W.Y. Cheung, Effects of ion beam bombardment on electrochromic tungsten oxide films studied by x-ray photoelectron spectroscopy and rutherford back-scattering. Thin Solid Films 376, 1311 (2000).

    Article  Google Scholar 

  27. M. Bourdin, I. Mjejri, A. Rougier, C. Labrugere, T. Cardinal, Y. Messaddeq, and M. Gaudon, Nano-particles (NPs) of WO3-type compounds by polyol route with enhanced electrochromic properties. J. Alloys Compd 823, 153690 (2020).

    Article  CAS  Google Scholar 

  28. J. Diaz-Reyes, R. Castillo-Ojeda, M. Galvan-Arellano, and O. Zaca-Moran, Characterization of WO3 thin films grown on silicon by HFMOD. Adv. Condens. Matter Phys. 2013, 591787 (2013).

    Article  Google Scholar 

  29. T.H. Fleisch, and G.J. Main, An XPS study of the UV reduction and photochromism of MoO3 and WO3. J. Chem. Phys. 76, 780 (1982).

    Article  CAS  Google Scholar 

  30. N. Kadam, T.G. Kim, D.S. Shin, K.M. Garadkar, and J. Park, Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity. J. Alloy. Compd. 710, 102 (2017).

    Article  CAS  Google Scholar 

  31. B.M. Alshabander, Copper(II)-doped WO3 nanoparticles with visible light photocatalytic antibacterial activity against gram-positive and gram-negative bacteria. Inorg. Nano-Met. Chem. 50 (12), 1329 (2020).

    Article  CAS  Google Scholar 

  32. S. Wang, W. Fan, Z. Liu, A. Yu, and X. Jiang, Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties. J. Mater. Chem. C 6, 191 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support from the LIGHT S&T Graduate Program (PIA3 Investment for the Future Program, ANR-17-EURE-0027)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gaudon.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badour, Y., Danto, S., Labrugère, C. et al. Cu-Doped and Un-Doped WO3 Photochromic Thin Films. J. Electron. Mater. 51, 1555–1567 (2022). https://doi.org/10.1007/s11664-021-09389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09389-3

Keywords

Navigation