Skip to main content
Log in

Hydrothermally Grown Porous Cobalt Oxide Nanostructures for Enzyme-Less Glucose Detection

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Porous transition metal oxide nanostructures are very attractive electrode materials for electrochemical glucose sensing owing to their high surface area and excellent catalytic activity. Development of a low-cost electrode with high sensitivity and selectivity towards glucose sensing is attractive for non-invasive diabetes monitoring. In this work, porous CoO nanostructured electrodes were grown on fluorine doped tin oxide (FTO) coated glass substrates using hydrothermal synthesis for enzyme-less glucose sensing. CoO porous electrodes showed glucose sensitivity ~887.49 µAmM-1cm-2, within glucose concentration range ~ 5 µM–0.425 mM. Such porous electrodes demonstrated lower detection limit ~ 1.76 µM with fast response time. To demonstrate non-invasive glucose detection, salivary glucose sensing experiments were also carried out in this study and showed glucose sensitivity ~ 854.30 µAmM-1cm-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  1. X. Niu, X. Li, J. Pan, Y. He, F. Qiu, and Y. Yan, RSC Adv. 6, 84893 (2016).

    Article  CAS  Google Scholar 

  2. H. Zhu, L. Li, W. Zhou, Z. Shao, and X. Chen, J. Mater. Chem. B 4, 7333 (2016).

    Article  CAS  Google Scholar 

  3. G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, and X. Zhang, Microchim Acta 180, 161 (2013).

    Article  CAS  Google Scholar 

  4. T. Arakawa, Y. Kuroki, H. Nitta, P. Chouhan, K. Toma, S. Sawada, S. Takeuchi, T. Sekita, K. Akiyoshi, S. Minakuchi, and K. Mitsubayashi, Biosens. Bioelectron. 84, 106 (2016).

    Article  CAS  Google Scholar 

  5. A. Romeo, A. Moya, T.S. Leung, G. Gabriel, R. Villa, and S. Sánchez, Appl. Mater. Today 10, 133 (2018).

    Article  Google Scholar 

  6. J. Kim, A.S. Campbell, and J. Wang, Talanta 177, 163 (2018).

    Article  CAS  Google Scholar 

  7. S. Ginnaram, J.T. Qiu, and S. Maikap, ACS Omega 5, 7032 (2020).

    Article  CAS  Google Scholar 

  8. D. Bruen, C. Delaney, L. Florea, and D. Diamond, Sensors 17, 1866 (2017).

    Article  Google Scholar 

  9. Y. Du, W. Zhang, and M.L. Wang, Biosensors 6, 10 (2016).

    Article  Google Scholar 

  10. A. Soni, and S.K. Jha, Biosens. Bioelectron. 67, 763 (2015).

    Article  CAS  Google Scholar 

  11. S. Gupta, M.T. Nayak, J.D. Sunitha, G. Dawar, N. Sinha, and N.S. Rallan, J. Oral Maxillofac. Pathol. 21, 334 (2017).

    Article  Google Scholar 

  12. T. Xu, W. Jin, Z. Wang, H. Cheng, X. Huang, X. Guo, Y. Ying, Y. Wu, F. Wang, Y. Wen, and H. Yang, Nanomaterials 8, 133 (2018).

    Article  Google Scholar 

  13. M. Harry, M. Chowdhury, F. Cummings, and C.J. Arendse, Sens. Bio-Sens. Res. 23, 100262 (2019).

    Article  Google Scholar 

  14. D. Ye, G. Liang, H. Li, J. Luo, S. Zhang, H. Chen, and J. Kong, Talanta 116, 223 (2013).

    Article  CAS  Google Scholar 

  15. J. Wang, L. Xu, Y. Lu, K. Sheng, W. Liu, C. Chen, Y. Li, B. Dong, and H. Song, Anal. Chem. 88, 12346 (2016).

    Article  CAS  Google Scholar 

  16. J. Chen, X. Zhu, Y. Ju, B. Ma, C. Zhao, and H. Liu, Sens. Actuators B Chem. 285, 56 (2019).

    Article  CAS  Google Scholar 

  17. D.-W. Hwang, S. Lee, M. Seo, and T.D. Chung, Anal. Chim. Acta 1033, 1 (2018).

    Article  CAS  Google Scholar 

  18. K. Tian, M. Prestgard, and A. Tiwari, Mater. Sci. Eng., C 41, 100 (2014).

    Article  CAS  Google Scholar 

  19. B. Cai, Y. Zhou, M. Zhao, H. Cai, Z. Ye, L. Wang, and J. Huang, Appl. Phys. A 118, 989 (2015).

    Article  CAS  Google Scholar 

  20. Z. Cui, H. Yin, Q. Nie, D. Qin, W. Wu, and X. He, J. Electroanal. Chem. 757, 51 (2015).

    Article  CAS  Google Scholar 

  21. H. Liu, X. Wu, B. Yang, Z. Li, L. Lei, and X. Zhang, Electrochim. Acta 174, 745 (2015).

    Article  CAS  Google Scholar 

  22. S. Fan, M. Zhao, L. Ding, J. Liang, J. Chen, Y. Li, and S. Chen, J. Electroanal. Chem. 775, 52 (2016).

    Article  CAS  Google Scholar 

  23. A. Roy, Y.-P. Chen, J.T. Qiu, and S. Maikap, Anal. Chem. 92, 8064 (2020).

    Article  CAS  Google Scholar 

  24. M. Dutta, S. Maikap, and J.T. Qiu, Adv. Electron. Mater. 5, 1800288 (2019).

    Google Scholar 

  25. H. Liu, X. Lu, Y. Hu, R. Chen, P. Zhao, L. Wang, G. Zhu, L. Ma, and Z. Jin, J. Mater. Chem. A 7, 12489 (2019).

    Article  CAS  Google Scholar 

  26. Z. Ye, C. Qin, G. Ma, X. Peng, T. Li, D. Li, Z. Jin, and A.C.S. Appl, Mater. Interfaces 10, 39809 (2018).

    Article  CAS  Google Scholar 

  27. L. Ma, Y. Hu, R. Chen, G. Zhu, T. Chen, H. Lv, Y. Wang, J. Liang, H. Liu, C. Yan, H. Zhu, Z. Tie, Z. Jin, and J. Liu, Nano Energy 24, 139 (2016).

    Article  CAS  Google Scholar 

  28. L. Ma, W. Zhang, P. Zhao, J. Liang, Y. Hu, G. Zhu, R. Chen, Z. Tie, J. Liu, and Z. Jin, J. Mater. Chem. A 6, 20076 (2018).

    Article  CAS  Google Scholar 

  29. G. Zhu, T. Chen, L. Wang, L. Ma, Y. Hu, R. Chen, Y. Wang, C. Wang, W. Yan, Z. Tie, J. Liu, and Z. Jin, Energy Storage Mater. 14, 246 (2018).

    Article  Google Scholar 

  30. M. Wang, J. Ma, X. Guan, W. Peng, X. Fan, G. Zhang, F. Zhang, and Y. Li, J. Alloy. Compd. 784, 827 (2019).

    Article  CAS  Google Scholar 

  31. L. Tian, G. He, Y. Cai, S. Wu, Y. Su, H. Yan, C. Yang, Y. Chen, and L. Li, Nanotechnology 29, 075502 (2018).

    Article  Google Scholar 

  32. H. Zhang, and S. Liu, J. Colloid Interface Sci. 485, 159 (2017).

    Article  CAS  Google Scholar 

  33. S.C. Petitto, and M.A. Langell, J. Vac. Sci. Technol. A 22, 1690 (2004).

    Article  CAS  Google Scholar 

  34. J. Deng, S. Li, Y. Zhou, L. Liang, B. Zhao, X. Zhang, and R. Zhang, J. Colloid Interface Sci. 509, 406 (2018).

    Article  CAS  Google Scholar 

  35. S.A. Lee, T.H. Lee, C. Kim, M.-J. Choi, H. Park, S. Choi, J. Lee, J. Oh, S.Y. Kim, and H.W. Jang, ACS Catal. 10, 420 (2020).

    Article  CAS  Google Scholar 

  36. T. Yu, Q. Xu, G. Qian, J. Chen, H. Zhang, L. Luo, and S. Yin, ACS Sustain. Chem. Eng. 8, 17520 (2020).

    Article  CAS  Google Scholar 

  37. K.R. Nandanapalli, D. Mudusu, J.-S. Yu, and S. Lee, J. Colloid Interface Sci. 558, 9 (2020).

    Article  Google Scholar 

  38. P. Chakraborty, S. Dhar, K. Debnath, T. Majumder, and S.P. Mondal, Sens. Actuators B Chem. 283, 776 (2019).

    Article  CAS  Google Scholar 

  39. P. Chakraborty, S. Dhar, N. Deka, K. Debnath, and S.P. Mondal, Sens. Actuators B Chem. 302, 127134 (2020).

    Article  CAS  Google Scholar 

  40. V.S. Subash, K. Alagumalai, S.-M. Chen, R. Shanmugam, and H.J. Shiuan, New J. Chem. 44, 15071 (2020).

    Article  CAS  Google Scholar 

  41. H.-C. Chen, W.-R. Su, Y.-C. Yeh, and A.C.S. Appl, Mater. Interfaces 12, 32905 (2020).

    Article  CAS  Google Scholar 

  42. S. Sun, N. Shi, B. Zhang, X. Liao, Z. Huang, X. Chen, X. Pu, and G. Yin, Nanotechnology 31, 375502 (2020).

    Article  CAS  Google Scholar 

  43. H.J. Jo, A. Shit, H.S. Jhon, and S.Y. Park, J. Ind. Eng. Chem. 89, 485 (2020).

    Article  CAS  Google Scholar 

  44. Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, and Y. Lei, Sens. and Actuators B: Chemical 191, 86 (2014).

    Article  CAS  Google Scholar 

  45. M. Li, X. Bo, Z. Mu, Y. Zhang, and L. Guo, Sens. Actuators B Chem. 192, 261 (2014).

    Article  CAS  Google Scholar 

  46. X. Yang, Y. Tang, M. Wei, L. Chen, Q. Liu, P. Wang, Q. Wu, C. Wang, and M. Zhang, J. Electroanal. Chem. 841, 36 (2019).

    Article  CAS  Google Scholar 

  47. S. Cheng, S. DelaCruz, C. Chen, Z. Tang, T. Shi, C. Carraro, and R. Maboudian, Sens. Actuators B Chem. 298, 126860 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research work was partially supported by SERB, Core Research Grant Project of Sanctioned No. CRG/2018/001636, Govt. of India. We acknowledged the central research facility (CRF) of NIT Agartala for XRD and AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvra Prakash Mondal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P., Deka, N., Patra, D.C. et al. Hydrothermally Grown Porous Cobalt Oxide Nanostructures for Enzyme-Less Glucose Detection. J. Electron. Mater. 50, 3699–3705 (2021). https://doi.org/10.1007/s11664-021-08852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08852-5

Keywords

Navigation